Scheme and Syllabus
(With effect from 2010-2011)

Master of Computer Applications

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM

SCHEME OF TEACHING AND EXAMINATION
MASTER OF COMPUTER APPLICATIONS

I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory Practical</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td>1</td>
<td>10MCA11</td>
<td>Problem Solving using C</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>10MCA12</td>
<td>Discrete Mathematics</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>10MCA13</td>
<td>Fundamentals of Computer Organization</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>10MCA14</td>
<td>Introduction to Unix</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>10MCA15</td>
<td>Professional Communication & Ethics</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>10MCA16</td>
<td>C Programming Laboratory</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>10MCA17</td>
<td>Unix Laboratory</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>10MCA18</td>
<td>IT and Digital Electronics Laboratory</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 09</td>
<td>400 650</td>
<td>1050</td>
</tr>
</tbody>
</table>

II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory Practical</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td>1</td>
<td>10MCA21</td>
<td>Business Data Processing with COBOL</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>10MCA22</td>
<td>Object Oriented Programming with C++</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>10MCA23</td>
<td>Data Structures using C</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>10MCA24</td>
<td>Management Information Systems</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>10MCA25</td>
<td>Operations Research</td>
<td>04 -</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>10MCA26</td>
<td>COBOL Programming Laboratory</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>10MCA27</td>
<td>Data Structures Using C Laboratory</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>10MCA28</td>
<td>Object Oriented Programming with C++</td>
<td>- 03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 09</td>
<td>400 650</td>
<td>1050</td>
</tr>
</tbody>
</table>
III SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
<th>Theory</th>
<th>Practica l</th>
<th>Duration</th>
<th>Marks</th>
<th>IA</th>
<th>Exam</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10MCA31</td>
<td>Systems Software</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10MCA32</td>
<td>Computer Networks</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10MCA33</td>
<td>Programming with Java</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10MCA34</td>
<td>Database Management Systems</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10MCA35</td>
<td>Operating Systems</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10MCA36</td>
<td>Systems Programming Laboratory</td>
<td>- 03</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10MCA37</td>
<td>Java Programming Laboratory</td>
<td>- 03</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10MCA38</td>
<td>DBMS Laboratory</td>
<td>- 03</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>20 09</td>
<td></td>
<td>400</td>
<td>650</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
<th>Theory</th>
<th>Practica l</th>
<th>Duration</th>
<th>Marks</th>
<th>IA</th>
<th>Exam</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10MCA41</td>
<td>Topics in Enterprise Architectures – I</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10MCA42</td>
<td>Software Engineering</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10MCA43</td>
<td>Web Programming</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10MCA44</td>
<td>Design and Analysis of Algorithms</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10MCA45</td>
<td>Elective I</td>
<td>04 -</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10MCA46</td>
<td>J2EE Laboratory</td>
<td>- 03</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10MCA47</td>
<td>Web programming Laboratory</td>
<td>- 03</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10MCA48</td>
<td>Algorithms Laboratory</td>
<td>- 03</td>
<td></td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>20 09</td>
<td></td>
<td>400</td>
<td>650</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective I

- 10MCA451 Computer Graphics and Visualization
- 10MCA452 UNIX system Programming
- 10MCA453 Multimedia Systems
- 10MCA454 Pattern Recognition
- 10MCA455 Principles of User Interface Design
- 10MCA456 Advanced Computer Networks
V SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
<th></th>
<th></th>
<th></th>
<th>IA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td>Duration</td>
<td>Marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10MCA51</td>
<td>Object-Oriented Modeling and Design Patterns</td>
<td>04</td>
<td></td>
<td>-</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>10MCA52</td>
<td>System Simulation and Modeling</td>
<td>04</td>
<td></td>
<td>-</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>10MCA53</td>
<td>Topics in Enterprise Architectures -II</td>
<td>04</td>
<td></td>
<td>-</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>10MCA54</td>
<td>Elective II</td>
<td>04</td>
<td></td>
<td>-</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>10MCA55</td>
<td>Elective III</td>
<td>04</td>
<td></td>
<td>-</td>
<td>03</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>10MCA56</td>
<td>Software Design Laboratory</td>
<td>-</td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>10MCA57</td>
<td>.Net Laboratory</td>
<td>-</td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>10MCA58</td>
<td>Mini Project</td>
<td>-</td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td>06</td>
<td>400</td>
<td>650</td>
<td>1050</td>
</tr>
</tbody>
</table>

Elective II
- 10MCA541 Information Retrieval
- 10MCA542 Data Warehousing and Data Mining
- 10MCA543 Supply Chain Management
- 10MCA544 Network Management
- 10MCA545 Compiler Design
- 10MCA546 Software Architectures

Elective III
- 10MCA551 Information & Network Security
- 10MCA552 Software Testing
- 10MCA553 Services Oriented Architecture
- 10MCA554 Wireless Networks and Mobile Computing
- 10MCA555 Storage Area Networks
- 10MCA556 Web 2.0 & Rich Internet Applications

VI SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
<th></th>
<th></th>
<th></th>
<th>IA</th>
<th>Dissertation</th>
<th>Viva</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practic al</td>
<td>Duration</td>
<td>Marks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Project Work</td>
<td>-</td>
<td>03</td>
<td>03</td>
<td>50</td>
<td>125</td>
<td>75</td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Students have to register for one Elective from each of the Three Elective Groups
I SEMESTER

Problem Solving Using C

Subject Code: 10MCA11
Hours/Week: 4
Total Hours: 52

I.A. Marks: 50
Exam Marks: 100
Exam Hours: 3

Algorithms and Flowcharts
The meaning of algorithms, Flowcharts and their need, Writing algorithms and drawing flowcharts for simple exercises like finding biggest of three numbers, to find roots of given quadratic equation, to find the biggest and smallest of given set of numbers and such other simple examples

Constants, Variables and Data Types
Character set, C tokens, keywords & identifiers, structure of C program, executing a C program. Constants, variables, data types, declaration of variables, declaration of storage classes, assigning values to variables defining symbolic constants, declaring a variable as constant, declaring a variable as volatile, overflow and underflow of data.

Operators and Expressions
Arithmetic operators, relational operators, logical operators, assignment operator, increment and decrement operator, conditional operator, bitwise operators, comma operator, special operators, arithmetic expressions, evaluation of expressions, precedence of arithmetic operators, type conversions in expressions, operator precedence and associativity, mathematical functions

Managing Input and Output Operations
The scanf() & printf() functions for input and output operations, reading a character, writing a character, (the getchar() & putchar() functions), the address operator(&), formatted input and output using format specifiers, Writing simple complete C programs.

Control Statements
Decision making with if statement, simple if statement, the if..else statement, nesting of if..else statements, the else..if ladder, the switch statement, the ?: operator, the goto statement, the break statement, programming examples

Loop Control Structures
The while statement, the do..while statement, the for statement, nested loops, jumps in loops, the continue statement, programming examples

Arrays
The meaning of an array, one dimensional and two dimensional arrays, declaration and initialization of arrays, reading, writing and manipulation of above types of arrays, multidimensional arrays, dynamic arrays, programming examples.

Character Arrays and Strings
Declaring and initializing string variables, reading string from terminal, writing string to screen, arithmetic operations on characters, putting strings together, comparison of two strings, string handling functions, table of strings, other features of strings, programming examples.

User Defined Functions
Need for user defined functions, a multi function program, elements of User defined functions, defining functions, return values and their types, function calls, function declaration, category of functions, no arguments and no return values, arguments but no return values, arguments with return values, no arguments with return value, functions that return multiple values, nesting of functions, recursion, passing arrays to functions, passing string to functions, programming examples.

Structures and Unions
Defining a structure, declaring structure variables, accessing structure members, structure initialization, copying and comparing structure variables, operations on individual members, array of structures, structures within structures, structures and functions, Unions, size of structures, bit fields, programming examples
Pointers 5 Hours
Understanding pointers, accessing the address space of a variable, declaring and initialization pointer variables, accessing a variable through its pointer, chain of pointers, pointer expressions, pointers and arrays, pointer and character strings, array of pointers, pointer as function arguments, functions returning pointers, pointers to functions, pointers and structures, programming examples

File Management in C 6 Hours
Defining and opening a file, closing a file, input/output operations on files, error handling during I/O operations, random access files, command line arguments, programming examples.

Dynamic Memory Allocation 4 Hours
Dynamic memory allocation, allocating a block of memory: malloc, allocating multiple blocks of memory: calloc, releasing the used space: Free, altering the size of a block: realloc, programming examples

The Preprocessor 2 Hours
Introduction, macro substitution, files inclusion, compiler control directives, ANSI additions, programming exercises.

Text Books:
 (Chapters: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.1-13.6 & 14)
 (Chapters: 1.1, 1.3, 2.1, 2.3, 3.1, 3.2 and 3.3)

Reference Books:
Discrete Mathematics

Set Theory 6 Hours
Sets and Subsets, Set Operations and the Laws of Set Theory, Counting and Venn Diagrams, A First Word on Probability, Countable and Uncountable Sets

Fundamentals of Logic 13 Hours
Basic Connectives and Truth Tables, Logic Equivalence – The Laws of Logic, Logical Implication – Rules of Inference; The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems

Properties of the Integers 7 Hours
Mathematical Induction, The Well Ordering Principle – Mathematical Induction, Recursive Definitions

Relations and Functions 14 Hours
Cartesian Products and Relations, Functions – Plain and One-to-One, Onto Functions – Stirling Numbers of the Second Kind, Special Functions, The Pigeon-hole Principle, Function Composition and Inverse Functions; Properties of Relations, Computer Recognition – Zero-One Matrices and Directed Graphs, Partial Orders – Hasse Diagrams, Equivalence Relations and Partitions

Groups, Coding Theory and Rings 6 Hours
Definitions, Examples, and Elementary Properties, Homomorphisms, Isomorphisms, and Cyclic Groups, Cosets, and Lagrange’s Theorem
Elements of Coding Theory, The Hamming Metric, The Parity Check, and Generator Matrices

Group Codes, Rings and Modular Arithmetic 6 Hours
Decoding with Coset Leaders, Hamming Matrices
The Ring Structure – Definition and Examples, Ring Properties and Substructures, The Integers Modulo n

Text Book:
 (Chapter 3.1, 3.2, 3.3, 3.4, Appendix 3, Chapter 2, Chapter 4.1, 4.2, Chapter 5.1 to 5.6, Chapter 7.1 to 7.4, Chapter 16.1, 16.2, 16.3, 16.5 to 16.9, and Chapter 14.1, 14.2, 14.3).

Reference Books:
Fundamentals of Computer Organization

Subject Code: 10MCA13
L.A. Marks: 50
Hours/Week: 4
Exam Marks: 100
Total Hours: 52
Exam Hours: 3

Number Systems and Logic Gates 7 Hours
Counting in Decimal and Binary, Place Value, Binary to Decimal Conversion, Decimal to Binary Conversion, Hexadecimal Numbers, Octal Numbers, Bits, Bytes, Nibbles, and Word Size, The AND Gate, The OR gate, The inverter and Buffer, The NAND gate, the NOR Gate, The exclusive OR gate, The Exclusive NOR Gates, The NAND Gate as an universal Gate, Gates with More than two inputs, Using Inverters to convert gates.

Combining Logic Gates and Arithmetic Circuits 9 Hours
Constructing Circuits from Boolean Expression, Drawing a circuit from a Maxterm Boolean Expression, Truth Tables and Boolean Expressions, Sample Problem Simplifying Boolean Expression, Karnaugh Maps, Karnaugh Maps with three variables, Karnaugh Maps with four variables, more Karnaugh Maps, using Demorgan’s Theorem, Binary Addition, Half Adders, Full Adders, Three Bit Adders, Binary Subtraction, Parallel Subtractors, IC Adders, Binary Multiplication, Binary Multipliers, 2s Complement Notation, Addition and Subtraction, 2s Complement adders/subtractor

Basic Structure of Computer 6 Hours
Computer Types, Functional Units, Basic Operational Concepts, Bus structures, Performance, Memory Location and Addresses

Machine Instruction and Programmes 8 Hours
Memory Operations, Instructions & Instruction Sequencing, Addressing Modes, Assemble Language, Basic Input/Output Operations

Input/Output Organization 8 Hours
Accessing I/O Devices, Interrupts, Direct Memory Accesses, Buses 240, Interface Circuits

Memory Systems 8 Hours
Some Basics concepts, Semiconductors RAM Memories, Read-Only Memories, Cache Memories, Virtual Memories

Arithmetic Unit 6 Hours
Addition & subtraction of Signed Numbers, Design of Fast adders, Multiplication of Positive Numbers, Signed-Operand Multiplication, Fast Multiplication, Integer division
Floating-Point Numbers & Operations

Text Books:
 (Chapters: 2.1 to 2.4, 2.6 to 2.8, 3.1 to 3.10, 4.1 to 4.9, 4.16, 10.1 to 10.11)
 (Chapters: 1.1 to 1.4, 1.6, 2.2 to 2.7, 4.1, 4.2, 4.4 to 4.6, 5.1 to 5.5, 5.7, 6.1 to 6.7)

Reference Books:
Introduction to UNIX

Subject Code: 10MCA14
Hours/Week: 4
Total Hours: 52
L.A. Marks: 50
Exam Marks: 100
Exam Hours: 3
Tota111 Hours: 52
Exam Hours: 3

10 Hours

General Purpose Utilities: banner, cal, date, calendar, who, printf, tty, stty, uname, passwd, lock, echo, tput, bc, script, spell and ispell.
Navigating the File System: The file, what’s in a filename? the parent-child relationship, pwd, the Home directory, Absolute pathnames, using absolute pathnames for a command, cd, mkdir, rmdir, Relative pathnames, The UNIX file system
Handling Ordinary Files: cat, cp, rm, mv, more, lp, file, wc, od, split, cmp, comm., diff.

6 Hours

The vi editor: The Three Modes, Input Mode, Saving, The Repeat Factor, Command Mode, Deletion, Navigation, Pattern Search, Joining lines, Repeating the Last command, undoing the Last Editing Instructions, Search and Replace.
Basic File Attributes: ls –l, the –d option, File Permissions, chmod.
Security and File Permission: users and groups, security level, changing permission, user masks, changing ownership and group

6 Hours

Shell Programming: Shell Scripts, read, Command Line Arguments, Exit Status of a Command, The Logical Operators && and ||, exit, if, and case conditions, expr, sleep and wait, while, until, for, $, @, redirection, The here document, set, trap, Sample Validation and Data Entry Scripts.
The Process: process basics, PS, internal and external commands, running jobs in background, nice, at and batch, cron, time commands
Customizing the Environment: System Variables, profile, sty, PWD, Aliases, Command History, On-Line Command Editing

8 Hours

More file attributes: hard link, symbolic link, umask, find
Simple filters: PR, head, tail, cut, paste, sort, uniq, tr commands

7 Hours

Filters using Regular Expression and the grep Family: grep, Regular Expression, egrep, fgrep, a sed instruction, Line Addressing, Inserting and Changing Test, Context addressing, writing selected lines to a file, The –f option, Substitution, Properties of Regular Expressions

7 Hours

Essential Shell Programming: shell script, read, exit, the if conditional, using Tests and [] to evaluate expression, the case conditional expr, while: looping, for: looping with a list, set and shift, trap, debugging shell scripts with Set - X.
Essential System Administration: root, administrat0r’s privileges, startup & Shutdown, managing disk space, cpio, tar

6 Hours

awk-Advanced Filters: Simple awk Filtering, Splitting a Line in to Fields, printf, the Logical and Relational Operators, Number Processing, Variables, The -f option, The BEGIN and END Positional Parameters, get line, Built-in variables, Arrays, Functions, Interface with the Shell, Control Flow.
Advanced Shell Programming: The sh command, export, cd, the Command, expr, Conditional Parameter Substitution, Merging Streams, Shell Functions, eval, Exec Statement.

2 Hours

Advanced vi: Operators, the ex mode, named buffered , Numbered Buffers, Entering Control Characters, Searching for a Character, Marking Text Customizing, vi

Text Books:
 (Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 20, 21)

Reference Books:
Professional Communication and Ethics

Subject Code: 10MCA15
I.A. Marks: 50

Hours/Week: 4
Exam Marks: 100

Total Hours: 52
Exam Hours: 3

Professional / Technical Communication
Basics of Technical Communication
5 Hours
Introduction, Process of Communication, Language as a Tool, Levels of Communication,
Levels of Communication, Communication Networks, Importance of Technical Communication

Barriers to Communication
Definition of Noise, Classification of Barriers
3 Hours

Technology in Communication
4 Hours
Impact of Technology, Software for Creating Messages, Software for Writing Documents, Software for
Presenting Documents, Transmitting Documents, Effective use of Available Technology

Active Listening
3 Hours
Introduction, Types of Listening, Traits of good Listener, Active versus passive listening, implications of
effective listening

Effective Presentation Strategies
5 Hours
Introduction, Defining purpose, Analyzing Audience and Locale, Organizing Contents, preparing outline,
Visual Aids, Understanding Nuances of Delivery, Kinesics, Proxemics, Paralinguistic’s, Chronemics,
Sample speech

Group Communication
5 Hours
Introduction, Group Discussion, Organizational Group discussion, Group discussion as part of selection
process Meetings, conferences.

Research paper, Dissertation and Thesis
4 Hours
Introduction, Research paper, Dissertation, Thesis

Ethics:
An Overview of Ethics
3 Hours
What are Ethics? Ethics in the Business World, Ethics in Information Technology (IT)

Ethics for IT Professionals and IT users
IT professionals, The Ethical behavior of IT professionals, IT Users
4 Hours

Privacy
3 Hours
Privacy Protection and the Law, Key Privacy and Anonymity Issues

Software Development
3 Hours
Strategies to Engineer Quality s/w, Key Issues

Employer/Employee Issues
3 Hours
Use of Nontraditional workers, Whistle Blowing

Case Studies and Discussion
7 Hours

Text Books:
1. Meenakshi Raman and Sangeeta Sharma: Technical Communication - Principles and Practices,
(Chapters: 1, 2, 3, 4, 5, 7, 16)
2. George Reynolds: Ethics in Information Technology, 2nd Edition, Thomson Course Technology,
2007.
(Chapters: 1, 2, 4, 7, 8)

Reference Books:
C Programming Laboratory

Subject Code: 10MCA16
L.A. Marks: 50
Hours/Week: 3
Exam Marks: 50
Total Hours: 42
Exam Hours: 3

Part A

1. a. Write a program to find the area of a triangle (Given the three sides).
 b. Write a program to find the area of a circle (Given the radius).

2. Write a program to find the Simple interest, given the principle, time and rate of interest with appropriate validations.

3. Write a program to find out whether a given year is a leap year or not.

4. Write a program to find the roots of a quadratic equation with appropriate error messages.

5. Write a program to display the following files of current directory.
 i) .EXE files ii) .BAT files iii) .OBJ files iv) .BAK files.
 By using system DOS command.

6. Write a program to find GCD and LCM of given two numbers.

7. Write a program to find the value of Sin (x) using the series.
 \[\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + \ldots \ldots \]

8. Write a program to print all prime numbers between m and n.

9. Write a program to reverse a number and check whether it is palindrome or Not.

10. Write a program to generate and print first n Fibonacci numbers using function.

11. Write a program to find a factorial of a given number using recursive function.

12. Write a program to convert UPPERCASE alphabets to LOWERCASE alphabets in a given string and vice-versa.

13. Write a program to read two strings and concatenate them (without using library functions).

14. Write a program to read a sentence and count the number of vowels and constants.

PART - B

1. Write a program to read N integers (zero, + ve and –ve) into an array and find sum of positive numbers, sum of negative numbers and average of all input numbers.

2. Write a program to input N real numbers and to find the mean, variance and standard deviation, where,
 \[
 \text{Mean} = \frac{\sum x_i}{N} \\
 \text{Variance} = \frac{\sum (x_i - \text{mean})^2}{N} \\
 \text{Deviation} = \sqrt{\text{Variance}} \quad \text{and} \quad 0 \leq i < n
 \]

3. Write a program to input N numbers (integers or real) and store them in an array. Conduct a Linear search for a given key number and report success or failure in the form of a suitable message.
4. Write a program to sort N numbers in ascending or descending order using bubble sort.

5. Write a program to accept N numbers sorted in ascending order and search for a given number using binary search. Report success or failure in the form of suitable messages.

6. Write a program to read two matrices A and B of size M x N and perform product of two given matrices.

7. Write a program to list the names of students who have scored more than 60% of total marks in three subjects using structure variables.

8. Write a program to compute the sum of two complex numbers – passing a structure to a function.

9. Define a book structure having title of the book, ISBN, author, price and month and year of publication as its members. Use a substructure to store the month and year of Publication information. Develop a program to accept a date (in the form of month and year) and list out all the book titles (along with price and ISBN) published during that date.

10. Define a student structure having the name, USN (university seat number), marks in five subjects, total and percentage of marks as its members. Marks of all the subjects are to be stored in an array. Develop a program to list the names of all the students who have failed.

11. Write a program to read N integers and store them in an array, find the sum of all these elements using pointer. Output the given array and the computed sum with suitable heading.

12. Write a program to read and write to a file.

13. Write a program to Create and count number of characters in a file.

14. Write a program to handle files with mixed data type.

Note: Students are required to execute one question from Part A and one from Part B
1. a. Write a non-recursive shell script which accepts any number of arguments and prints them in the reverse order (For example, if the script is named rags, then executing args A B C should produce C B A on the standard output).

b. Write a shell script that accepts two file names as arguments, checks if the permissions for these files are identical and if the permissions are identical, output common permissions and otherwise output each file name followed by its permissions.

2. a. Write a shell script that takes a valid directory name as an argument and recursively descends all the subdirectories, finds the maximum length of any file in that hierarchy and writes this maximum value to the standard output.

b. Write a shell script that accepts a path name and creates all the components in that path name as directories. For example, if the script is named mpc, then the command mpc a/b/c/d should create directories a, a/b, a/b/c, a/b/c/d.

3. a. Write a shell script which accepts valid log-in names as arguments and prints their corresponding home directories, if no arguments are specified, print a suitable error message.

b. Write shell script to implement terminal locking (similar to the lock command). It should prompt the user for a password. After accepting the password entered by the user, it must prompt again for the matching password as confirmation and if match occurs, it must lock the keyword until a matching password is entered again by the user, Note that the script must be written to disregard BREAK, control-D. No time limit need be implemented for the lock duration.

4. a. Create a script file called file-properties that reads a file name entered and outputs its properties.

b. Write a shell script that accept one or more filenames as argument and convert all of them to uppercase, provided they exist in current directory.

5. a. Write a shell script that displays all the links to a file specified as the first argument to the script. The second argument, which is optional, can be used to specify in which the search is to begin. If this second argument is not present, the search is to begin in current working directory. In either case, the starting directory as well as all its subdirectories at all levels must be searched. The script need not include any error checking.

b. Write a shell script that accept filenames as argument and display its creation time if file exist and if it does not send output error message.

6. a. Write a shell script to display the calendar for current month with current date replaced by * or ** depending on whether the date has one digit or two digits.

b. Write a shell script to find smallest of three numbers that are read from keyboard.

7. a. Write a shell script using expr command to read in a string and display a suitable message if it does not have at least 10 characters.

b. Write a shell script to compute the sum of number passed to it as argument on command line and display the result.

8. a. Write a shell script that compute gross salary of an employee, accordingly to rule given below.

 If basic salary is < 15000 then HRA=10% of basic 7 DA=90% of basic.

 If basic salary is >=15000 then HRA=500 of basic & DA=98% of basic.

b. Write a shell script that delete all lines containing a specific word in one or more file supplied as argument to it.

9. a. Write a shell script that gets executed displays the message either “Good Morning” or “Good Afternoon” or “Good Evening” depending upon time at which the user logs in.

b. Write a shell script that accept a list of filenames as its argument, count and report occurrence of each word that is present in the first argument file on other argument files.

10. a. Write a shell script that determine the period for which a specified user is working on system.
b. Write a shell script that reports the logging in of a specified user within one minute after he/she log
in. The script automatically terminate if specified user does not log in during a specified period of
time.

11. a. Write a shell script that accepts two integers as its argument and compute the value of first number
raised to the power of second number.
b. Write a shell script that accept the file name, starting and ending line number as an argument
and display all the lines between the given line number.

12. a. Write a shell script that folds long lines into 40 columns. Thus any line that exceeds
40 characters must be broken after 40th, a "\textbackslash\" is to be appended as the indication of folding and the
processing is to be continued with the residue. The input is to be supplied through a text file created
by the user.
b. Write an awk script that accepts date argument in the form of mm-dd-yy and displays it in the form
if day, month, and year. The script should check the validity of the argument and in the case of
error, display a suitable message.

13. a. Write an awk script to delete duplicated line from a text file. The order of the original
lines must remain unchanged.
b. Write an awk script to find out total number of books sold in each discipline as well as total book
sold using associate array down table as given below.

 i. Electrical 34
 ii. Mechanical 67
 iii. Electrical 80
 iv. Computer Science 43
 v. Mechanical 65
 vi. Civil 198
 vii. Computer Science 64

14. Write an awk script to compute gross salary of an employee accordingly to rule given below.
 If basic salary is < 10000 then HRA=15\% of basic & DA=45\% of basic.
 If basic salary is >=10000 then HRA=20\% of basic & DA=50\% of basic.

 Note: In the examination each student picks one question from a lot of all the 14 questions.
IT and Digital Electronics Laboratory

Subject Code: 10MCA18
Hours/Week: 3
Total Hours: 42
I.A. Marks: 50
Exam Marks: 50
Exam Hours: 3

PART - A

Exercises on Office Tools 21 Hours

Note: Exercises on the following topics to be conducted in the laboratory using any of the very widely used current software packages

Word Processing
Preparation of business letters, project proposals, etc. Experimenting with all manipulation facilities like bold facing, Italicizing, Alignment cut and paste, spell checking including headers and footers, etc., Use of Mail-merge facility.

Computer Presentation
Learning commands, Preparation of slides, inserting texts, graphs, etc., color changing, automatic presentation of slides, changing time settings, object linking and embedding, etc

Database Management System
Creation of Database - Tables, fields, keys, Basic queries - insert, delete, update, design of data entry forms

PART - B

Exercises on Digital Electronics 21 Hours

1. Realization of X-OR and X-NOR operations using basic gates.
2. Design of Half Adder and Full adder using 2-input NAND gates.
3. Verify addition of two binary numbers using 4-bit adder chip.
4. Design and implement Excess-3 to BCD code converter using 4-bit adder chip.
5. Construct and Implement the Boolean expression using AND,OR and NOT gates
 \[(A+B).(C+D).(A+C) = Y\]
6. Construct and Implement the Boolean expression using only NAND gates
 \[A \overline{BC} \overline{D} + A \overline{B} C D + A B C D + AB \overline{CD} = Y\]

Note: Students are required to execute one question from Part A and one from Part B
II SEMESTER

Business Data Processing with COBOL

Subject Code: 10MCA21
IA Marks: 50
Hours/Week: 4
Exam Marks: 100
Total Hours: 52
Exam Hours: 3

Introduction 3 Hours
Coding Format for COBOL Programs, Structure of a COBOL Program, Character Set, COBOL words, Data Names and Identifiers, Literal, Figurative Constants, Continuation of lines and notations

Identification, Environment and Data Division 5 Hours
General Formats, Configuration Section, Input-Output Section, Level Structure, Data Description entries, Picture Clause, Value Clause, File Section, Working-storage Section, Editing characters of different data and examples, Special–names Paragraph, Classes and Categories of Data

Procedure Division and Basic Verbs 6 Hours
Structure of the Procedure Division, Data Movement Verb and other options of Move Statements, Arithmetic Verbs, Sequence Control Verbs, Input and Output Verbs, Conditional Verb: simple IF, categories of COBOL statements.

Different Types of Clauses and other Verbs 4 Hours
Usage Clause, Synchronized Clause, Justified Clause, Redefines Clause and Renames Clause, Qualification of Data Names, Sign Clause, Elementary and Group Moves, Corresponding Option: Move Corresponding, Add Corresponding and Subtract Corresponding, Rounded Option, On Size Error Option, Compute Verb

Computation and Decision Making 8 Hours
Interactive Processing using Screen Sections, Intrinsic Functions, Conditions: Relational Condition, Class Condition, Condition Name Condition, Negated Simple Condition, Compound Condition, Sign Condition, If Statements, Alter Statement, Perform Statements, Exit Statement

Array Processing and Table Handling 6 Hours
Occurs Clause and Subscripting, assigning values to table elements, Multi Dimensional Tables, Perform and Table Handling, Indexed Tables and Indexing, Set Verb, Search Verb, Occurs Depending Clause, Index data item

Sequential File Processing, Sorting and Merging of Files 10 Hours

Indexed and Relative File Processing, Report Writer, and Subroutines 10 Hours

Text Books:
 (Chapters: 3.1 to 3.10, 4.1, 4.2, 5.1 to 5.7, 6.1 to 6.7, 8.1 to 8.7, 9.1 to 9.5, 10.1 to 10.6, 11.1 to 11.10, 13.1 to 13.4, 13.6, 14.1 to 14.7, 16.1, 16.2, 18.1 to 18.7, 19.1 to 19.6)
 (Chapters: 1, 6, and 7)

Reference Books:
Object Oriented Programming with C++

Subject Code: 10MCA21
Hours/Week: 4
Total Hours: 52
IA Marks: 50
Exam Marks: 100
Exam Hours: 3

Introduction
Overview of C++, Sample C++ program, Different data types, operators, expressions, and statements, arrays and strings, pointers & user-defined types
Function Components, argument passing, inline functions, function overloading, recursive functions

Classes & Objects
Class Specification, Class Objects, Scope resolution operator, Access members, Defining member functions, Data hiding, Constructors, Destructors, Parameterized constructors, Static data members, Functions;
Friend functions, Passing objects as arguments, Returning objects, Arrays of objects, Dynamic objects, Pointers to objects, Copy constructors, Generic functions and classes, Applications
Operator overloading using friend functions such as +, - , pre-increment, post-increment, [] etc., overloading <<, >>.

Inheritance
Base Class, Inheritance and protected members, Protected base class inheritance, Inheriting multiple base classes; Constructors, Destructors and Inheritance, Passing parameters to base class constructors, Granting access, Virtual base classes

Virtual functions, Polymorphism
Virtual function, Calling a Virtual function through a base class reference, Virtual attribute is inherited, Virtual functions are hierarchical, Pure virtual functions, Abstract classes, Using virtual functions, Early and late binding.

I/O System Basics, File I/O
C++ stream classes, Formatted I/O, I/O manipulators, fstream and the File classes, File operations

Exception Handling, STL
Exception handling fundamentals, Exception handling options
STL: An overview, containers, vectors, lists, maps.

Text Books:

Reference Books:
Data Structures using C

Subject Code: 10MCA23
LA Marks: 50
Hours/Week: 4
Total Hours: 52
Exam Marks: 100
Exam Hours: 3

<table>
<thead>
<tr>
<th>Category</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC CONCEPTS</td>
<td>8</td>
</tr>
<tr>
<td>Pointers and Dynamic Memory Allocation, Algorithm Specification, Data Abstraction, Performance Analysis, Performance Measurement</td>
<td></td>
</tr>
<tr>
<td>ARRAYS and STRUCTURES</td>
<td>6</td>
</tr>
<tr>
<td>Arrays, Dynamically Allocated Arrays, Structures and Unions, Polynomials, Sparse Matrices, Representation of Multidimensional Arrays</td>
<td></td>
</tr>
<tr>
<td>STACKS AND QUEUES</td>
<td>6</td>
</tr>
<tr>
<td>Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues Using Dynamic Arrays, Evaluation of Expressions, Multiple Stacks and Queues.</td>
<td></td>
</tr>
<tr>
<td>LINKED LISTS</td>
<td>6</td>
</tr>
<tr>
<td>Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists</td>
<td></td>
</tr>
<tr>
<td>TREES, Graphs</td>
<td>12</td>
</tr>
<tr>
<td>PRIORITY QUEUES</td>
<td>6</td>
</tr>
<tr>
<td>EFFICIENT BINARY SEARCH TREES</td>
<td>8</td>
</tr>
</tbody>
</table>

Text Book:
 (Chapters 1, 2.1 to 2.6, 3, 4, 5.1 to 5.3, 5.5 to 5.11, 6.1, 9.1 to 9.5, 10)

Reference Books:
Management Information System

Subject Code: 10MCA24
Hours/Week: 4
Total Hours: 52

Systems Engineering 4 Hours
System concepts, system control, types of systems, handling system complexity, Classes of systems, General model of MIS, Need for system analysis, System analysis for existing system & new requirement, system development model, MIS & system analysis

Information and Knowledge 4 Hours
Information concepts, classification of information, methods of data and information collection, value of information, information: A quality product, General model of a human as information processor, Knowledge

Introduction of MIS 4 Hours
MIS: Concept, Definition, Role of the MIS, Impact of MIS, MIS and the user, Management as a control system, MIS support to the management, Management effectiveness and MIS, Organization as system. MIS: organization effectiveness

Strategic Management of Business 3 Hours
Concept of corporate planning, Essentiality of strategic planning, Development of the business strategies, Type of strategies, short-range planning, tools of planning, MIS: strategic business planning

Development of MIS 4 Hours
Development of long range plans of the MIS, Ascertaining the class of information, Determining the information requirement, Development and implementation of the MIS, Management of information quality in the MIS, Organization for development of MIS, MIS development process model

Developing Business/IT Strategies/IT Solutions 5 Hours
Planning fundamentals (real world cases), Organizational planning, planning for competitive advantage,(SWOT Analysis), Business models and planning, Business/IT planning, identifying business/IT strategies, Implementation Challenges, Change management., Developing business systems, (real world case), SDLC, prototyping, System development process, implementing business system

Business Process Re-Engineering 2 Hours
Introduction, Business process, process model of the organization, value stream model of the organization, what delay the business process, relevance of information technology, MIS and BPR

Technology of Information System 4 Hours
Introduction, Data processing, Transaction processing, Application processing, information system processing, TQM of information systems, Human factors & user interface, Strategic nature of IT decision, MIS choice of information technology

Decision Making and DSS 3 Hours
Decision making concepts; decision making process, decision-making by analytical modeling, Behavioral concepts in decision making, organizational decision-making, Decision structure, DSS components, Management reporting alternatives.

Data resource Management 3 Hours
Managing data sources, Foundation concepts of data, types of databases, traditional file processing, DBMS approach, Database structure, Database development

Electronic Business systems 4 Hours
Enterprise business system – Introduction, cross-functional enterprise applications, real world case, Functional business system, - Introduction, marketing systems, sales force automation, CIM, HRM, online accounting system, Customer relationship management, ERP, Supply chain management (real world cases for the above)

Enterprise Business Systems 6 Hours
Electronic commerce fundamentals, e-Commerce applications and Issues, (real world cases)
Client Server Architecture and E-business Technology

Text Books:
 (Chapters: 1, 3, 5, 6, 7,8,10, 11, 16.1 to 16.7, 16.10 to 16.12, 18.7, 18.8, 20)
 (Chapters: 1, 5, 7, 8, 9, 10, 11)

Reference Books:
Introduction and Overview of the OR Modeling Approach 3 Hours
The origin of OR, the nature of OR, the impact of OR, defining the problem and gathering data, Formulating a mathematical model, deriving solutions from the model, testing the model, preparing to apply the model, implementation.

Introduction to Linear Programming 6 Hours
Formulation of linear programming problem (LPP), examples, Graphical solution, the LP Model, Special cases of Graphical method, assumptions of Linear Programming (LP), additional example

Solving LPP - the Simplex Method 12 Hours
The essence of the simplex method, setting up the simplex method, algebra of the simplex method, the simplex method in tabular form, special cases in the simplex method, tie breaking in the simplex method, adopting to other model forms (Two Phase method, Big-M method), post optimality analysis.

Theory of the Simplex Method 4 Hours
Foundation of the simplex method, the revised simplex method, a fundamental insight

Duality Theory and Sensitivity Analysis 9 Hours
The essence of duality theory, economic interpretation of duality, primal dual relationship, adapting to other primal forms, the role of duality in sensitive analysis, the dual simplex method

Transportation and Assignment Problems 6 Hours
The transportation problem, a stream line simplex method for the transportation problem, the assignment problem, a special algorithm for the assignment problem

Metaheuristics 6 Hours
The nature of Metaheuristics, Tabu Search, Simulated Annealing, Generating Algorithms

Game Theory 6 Hours
The formulation of two persons, zero sum games, solving simple games- a prototype example, games with mixed strategies, graphical solution procedure, solving by linear programming, extensions

Text Books:
 (Chapters 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 7.1, 8.1, 8.2, 8.3, 8.4, 13.1, 13.2, 13.3, 13.4, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6)

Reference Books:
1. Write a program for the following:
 a. Evaluate the following equation using COMPUTE verb.
 \[Z = (A - B) \times C \]
 b. To find the sum of individual digits in the given ‘n’ digit decimal number.

2. Write a program for the following:
 a. Generating odd and even numbers between the given limits by using PERFORM statement.
 b. Sorting numeric numbers.

3. Write a program to search a record in the file without using SEARCH verb.

4. By using table handling concepts, write a program for
 a. Sorting alphanumeric data.
 b. Searching a numeric number using SEARCH verb.

5. By using table handling concepts, write a program for matrix addition and matrix subtraction.

6. By using table handling concepts, write a program for matrix multiplication.

7. Write a program for the following:
 a. To sort records in the file using SORT verb.
 b. To merge files using MERGE verb.

8. Write a program to read employee file as sequential file and calculate Gross Pay and Net Pay for employees in the organization.

9. Write a program to store student’s details with results in a file with sequential file handling techniques.

10. Using the index file organization, write a program to store employee details.

11. Using the index file organization, write a program to update the employee salary (increase DA of 3%).

12. Write a program for the following:
 a. To delete a record in the index file.
 b. To search a record in the index file.

13. Write a program to calculate Net Pay and Gross Pay by reading relative file containing fields Emp_no, Emp_name, Basic_pay. Store the output in relative file.

14. Write a program to find simple interest and compound interest using subroutine concept.

15. Write a program to generate a sales report.

Note: In the examination each student picks one question from a lot of all the 15 questions.
1. Write a C Program to construct a stack of integers and to perform the following operations on it:
 a. Push
 b. Pop
 c. Display
 The program should print appropriate messages for stack overflow, stack underflow, and stack empty.

2. Write a C Program to convert and print a given valid parenthesized infix arithmetic expression to postfix expression. The expression consists of single character operands and the binary operators + (plus), - (minus), * (multiply) and / (divide).

3. Write a C Program to evaluate a valid suffix/postfix expression using stack. Assume that the suffix/postfix expression is read as a single line consisting of non-negative single digit operands and binary arithmetic operators. The arithmetic operators are + (add), - (subtract), * (multiply) and / (divide).

4. Write a C program using recursive function for the following:
 a. To calculate GCD and LCM of 2 integer numbers.
 b. To solve Towers of Hanoi problem.
 c. To search an element in a list using binary search

5. Write a C Program to simulate the working of a queue of integers using an array. Provide the following operations:
 a. Insert
 b. Delete
 c. Display

6. Write a C Program to simulate the working of a circular queue of integers using an array. Provide the following operations:
 a. Insert
 b. Delete
 c. Display

7. Write a program to design a priority queue which is maintained as a set of queues (assume a maximum of 3 queues). The elements are inserted based upon the given priority. The deletion of an element is to be done starting from the 1st queue, if it is not empty. If it is empty, the elements from the 2nd queue will be deleted and so on.

8. Write a C Program using dynamic variables and pointers, to construct a singly linked list consisting of the following information in each node: student id (integer), student name (character string) and semester (integer). The operations to be supported are:
 a. The insertion operation
 i. At the front of a list
 ii. At the back of the list
 iii. At any position in the list
 b. Deleting a node based on student id. If the specified node is not present in the list an error message should be displayed. Both the options should be demonstrated.
 c. Searching a node based on student id and update the information content. If the specified node is not present in the list an error message should be displayed. Both situations should be displayed.
 d. Displaying all the nodes in the list.

9. Write a C Program using dynamic variables and pointers, to construct an ordered (ascending) singly linked list based on the rank of the student, where each node consists of the following information: student id (integer), student name (character string) and rank (integer).
10. Write a C Program using dynamic variables and pointers to construct a stack of integers using singly linked list and to perform the following operations:
 a. Push
 b. Pop
 c. Display
 The program should print appropriate messages for stack overflow and stack empty.

11. Write a C Program to support the following operations on a doubly linked list where each node consists of integers:
 a. Create a doubly linked list by adding each node at the front.
 b. Insert a new node to the left of the node whose key value is read as an input.
 c. Delete the node of a given data, if it is found, otherwise display appropriate message.
 d. Display the contents of the list.
 (Note: Only either (a, b and d) or (a, c and d) may be asked in the examination)

12. Write a C Program
 a. To construct a binary search tree of integers.
 b. To traverse the tree using all the methods i.e., inorder, preorder and postorder.
 c. To display the elements in the tree.

13. Write a C Programs for searching an element on a given list of integers using the
 a. Binary Search.
 b. Linear search

14. Write a C program to sort a list of N integers using the quick sort algorithm.

15. Write a C program to traverse the nodes in a graph using Breadth First Search.

 Note: In the examination each student picks one question from a lot of all the 15 questions.
1. Given that an EMPLOYEE class contains the following members:
 a. **Data Members:** Employee_Number, Employee_Name, Basic, DA, IT, Net_Sal
 b. **Member Functions:** to read data, to calculate Net_Sal and to print data members

2. Write a C++ program to read data on N employees and compute the Net_Sal of each employee (DA = 52% of Basic and Income Tax = 30% of the gross salary)

3. Define a STUDENT class with USN, Name, and Marks in 3 tests of a subject. Declare an array of 10 STUDENT objects. Using appropriate functions, find the average of the two better marks for each student. Print the USN, Name and the average marks of all the students.

4. Write a C++ program to create a class called COMPLEX and implement the following overloading functions ADD that return a complex number:
 a. ADD(a, s2) – where ‘a’ is an integer (real part) and s2 is a complex number
 b. ADD(s1, s2) – where s1 and s2 are complex numbers

2. Write a C++ program to create a class called LIST (linked list) with member functions to insert an element at the front as well as to delete an element from the front of the list. Demonstrate all the functions after creating a list object.

3. Write a C++ program to create a template function for Quicksort and demonstrate sorting of integers and doubles.

4. Write a C++ program to create a class called STACK using an array of integers. Implement the following operations by overloading the operators “+” and “-”:
 a. s1 = s1 + element; where s1 is an object of the class STACK and element is an integer to be pushed on the top of the stack
 b. s1 = s1 - ; where s1 is an object of the class STACK. ‘-‘ operator pops the element.
 Handle the STACK empty and full conditions. Also display the contents of the stack after each operation, by overloading the << operator.

5. Write a C++ program to create a class called DATE. Accept two valid dates in the form dd/mm/yy. Implement the following operations by overloading the operators ‘+’ and ‘-‘. After every operation display the results by overloading the operator <<.
 a. no_of_days = d1 – d2; where d1 and d2 are DATE objects, and no_of_days is an integer
 b. d2 = d1 + no_of_days; where d1 is a DATE object and no_of_days is an integer

6. Create a class called MATRIX using two-dimensional array of integers. Implement the following operations by overloading the operator ++ which checks the compatibility of two matrices to be added and subtracted. Perform the addition and subtraction by overloading the + and – operators respectively. Display the results by overloading the operator <<.
 If (m1==m2) then m3 = m1+m2 and m4 = m1-m2 else display error.

7. Write a C++ program to create a class called OCTAL which has the characteristics of an octal number. Implement the following operations by writing an appropriate constructor and an overloaded operator +.
 a. OCTAL h = x; where x is an integer.
 b. int y = h + k; where h is an OCTAL object and k is an integer
 Display the OCTAL result by overloading the operator << . Also display the values of h and y.

8. Write a C++ program to create a class called QUEUE with member functions to add an element and to delete an element from the queue. Using the member functions, implement a queue of integers and double. Demonstrate the operations by displaying the contents of the queue after every operation.

9. Write a C++ program to create a class called DLIST (doubly Linked List) with member functions to insert a node at a specified position and delete a node from a specified position of the list. Demonstrate the operations by displaying the content of the list after every operation.
10. Write a C++ program to create a class called STUDENT with data members USN, Name and Age. Using inheritance, create the classes UGSTUDENT and PGSTUDENT having fields as Semester, Fees and Stipend. Enter the data for at least 5 students. Find the semester-wise average age for all UG and PG students separately.

11. Write a C++ program to create a class called STRING and implement the following operations. Display the results after every operation by overloading the operator <<.
 a. STRING s1 = “VTU”
 b. STRING s2 = “BELGAUM”
 c. STRING s3 = s1 + s2 (Use copy constructor)

12. Write a C++ program to create a class called BIN_TREE (Binary Tree) with member functions to perform in-order, preorder and post-order traversals. Create a BIN_TREE object and demonstrate the traversals.

13. Write a C++ program to create a class called EXPRESSION. Using appropriate member functions convert a given valid Infix expression into postfix form. Display the infix and postfix expressions.

 Note: In the examination each student picks one question from a lot of all the 13 questions.
III SEMESTER

Systems Software

Subject Code: 10MCA31
I.A. Marks : 50
Hours/Week : 04
Exam Hours: 03
Total Hours : 52
Exam Marks: 100

Machine Architecture 6 Hours

Assembler 12 Hours
Basic Assembler Function - A Simple SIC Assembler, Assembler Algorithm and Data Structures, Machine Dependent Assembler Features - Instruction Formats & Addressing Modes, Program Relocation.

Loaders and Linkers 8 Hours

Editors And Debugging Systems 6 Hours
Text Editors - Overview of Editing Process, User Interface, Editor Structure, Interactive Debugging Systems - Debugging Functions and Capabilities, Relationship With Other Parts Of The System, User-Interface Criteria.

Macro Processor 8 Hours

Lex and Yacc 12 Hours

Text Books:
 (Chapters 1.1 to 1.3, 2 (except 2.5.2 and 2.5.3), 3 (except 3.5.2 and 3.5.3), 4 (except 4.4.3))
 (Chapters 1, 2 (Page 2-42), 3 (Page 51-65))

Reference Books:
Computer Networks

Subject Code: 10MCA32
L.A. Marks : 50
Hours/Week : 04
Exam Hours: 03
Total Hours : 52
Exam Marks: 100

Foundation
8 Hours
Building a Network; Applications; Requirements; Network Architecture; Implementing Network software;
Performance

Direct Link Networks
12 Hours
Physically connecting hosts; Hardware building blocks; Encoding; Framing; Error detection; Reliable
transmission; Ethernet (802.3); Ring; (802.5, FDDI, 802.17); Wireless (802.15.1, 802.11, 802.16, Cell
Phone Technologies).

Packet Switching
7 Hours
Switching and forwarding; Bridges and LAN Switches

Internetworking
12 Hours
Simple internetworking (IP); Routing; Global Internet

End-to-End Protocols; Resource Allocation Issues
7 Hours
Simple demultiplexer (UDP); Reliable byte stream (TCP); Issues in resource allocation

Applications
6 Hours
Application-Layer overview; Domain Name System; Remote Login protocols; Electronic mail; File
transfer and FTP; World Wide Web and HTTP; Overview of VoIP telephony; VoIP signaling protocols.

Text Books:
 (Chapters 1, 2, 3.1, 3.2, 4.1, 4.2, 4.3, 5.1, 5.2, 6.1)
 (Chapters 9.1 to 9.6, 18.1, 18.2)

References:
 2006.
3. Alberto Leon-Garcia and Indra Widjaja: Communication Networks -Fundamental Concepts and
Programming with Java

Subject Code: 10MCA33
IA Marks: 50
Hours/Week: 4
Exam Hours: 03
Total Hours: 52
Exam Marks: 100

An Overview of Java
Object-Oriented Programming, A First Simple Program, A Second Short Program, Using Blocks of Code
Lexical Issues, The Java Class Libraries. Data Types, Variables, and Arrays: Java Is a Strongly Typed
Language, The Primitive Types, A Closer Look at Literals, Variables, Type Conversion and casting,
Automatic Type promotion in Expression, Arrays, A few words about Strings. Operators: Arithmetic
Operator, The ? Operator, Operator Precedence, Using Parentheses. Control Statements: Java’s Selection,
Iteration Statements, Jump Statements.

Introducing Classes:
Class Fundamentals, Declaring Objects, Assigning Object Reference Variables Introducing Methods,
Constructors, The this Keyword, Garbage, The finalize() Method A Stack Class.
A Closer Look at Methods and Classes: Overloading Methods, Overloading Constructors, Using Objects as
Parameters, A Closer Look at Argument Passing, Returning Objects, Recursion, Introducing Access
Control, Understanding static, Introducing final, Arrays Revisited, Introducing Nested and Inner Classes,
Exploring the String Class, Using Command-Line Arguments, Varargs

Inheritance:
Inheritance Basics, Using super, Using super Creating a Multilevel Hierarchy, When Constructors Are
Called, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with
Inheritance, The Object Class. Packages and Interfaces: Packages, Access Protection, An Access Example
Importing Packages, Interfaces. Exception Handling: Exception-Handling Fundamentals, Exception Types,
Uncaught Exceptions Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws,
finally, Java’s Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions, Using
Exceptions.

Multithreaded Programming:
The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive()
and joint(), Thread Priorities, Synchronization, Interthread Communication, Suspending, Resuming, and
Stopping Threads, Using Multithreading.
Input/Output: Exploring java.io: The Java I/O Classes and Interfaces, File, The Closable and Flushable
I/O, Serialization, Stream Benefits.

Enumeration, Autoboxing:
Enumeration, Type Wrappers, Autoboxing. Generics: What are Generics?, A Simple Generics Example, A
Generics Class with two Type Parameters, The General Form of a Generic Class. String Handling: The
String Constructors, String Length, Special String Operations, Character Extraction, String Comparison,
Searching Strings, Modifying a String, Data Conversion Using valueOf(). Changing the Case of Characters
Within a String, Additional String Methods, StringBuffer, String Builder.

Exploring java.lang:
Primitive Type Wrappers, System, Object, Class, Class Loader, Math, Thread, ThreadGroup, Runnable,
Throwable, The Collections Framework: Collections Overview, The Collection Interfaces, The List
HashSet, The TreeSet Class.

Networking:
Networking Basics, The Networking Classes and Interfaces InetAddress, TCP/IP Client Sockets, URL,
URLConnection, HTTP URL Connection, TCP/IP Server Sockets, Cookies, Inet4Address and Inet6Address,
The URI Class, RMI.

The Applet Class:

4 Hours
7 Hours
6 Hours
6 Hours
7 Hours
5 Hours
Swing: Introducing Swing, Exploring Swing.

Text Books:

Reference Books:
Database Management Systems

Introduction
7 Hours
Introduction; An example; Characteristics of Database approach; Actors on the screen; Workers behind the scene; Advantages of using DBMS approach; A brief history of database applications; when not to use a DBMS. Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment; Centralized and client-server architectures; Classification of Database Management systems.

Entity-Relationship Model
7 Hours
Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two.

Relational Model and Relational Algebra
8 Hours
Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations : JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping.

SQL
16 Hours
SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More complex SQL Queries. Insert, Delete and Update statements in SQL; Specifying constraints as Assertion and Trigger; Views (Virtual Tables) in SQL; Additional features of SQL; Database programming issues and techniques; Embedded SQL, Dynamic SQL; Database stored procedures and SQL / PSM.

Database Design
8 Hours
Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form

Transaction Management
6 Hours
The ACID Properties; Transactions and Schedules; Concurrent Execution of Transactions; Lock- Based Concurrency Control; Performance of locking; Transaction support in SQL; Introduction to crash recovery.

Text Books:
 (Chapters 1, 2, 3 except 3.8, 5, 6.1 to 6.5, 7.1, 8, 9.1, 9.2 except SQLJ, 9.4, 10)
 (Chapters 16, 17.1, 17.2, 18)

Reference Books:
Operating Systems

Introduction to Operating Systems, System structures 6 Hours
What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and security; Distributed system; Special-purpose systems; Computing environments, Operating System Services; User - Operating System interface; System calls; Types of system calls; System programs; Operating System design and implementation; Operating System structure; Virtual machines; Operating System generation; System boot.

Process Management 7 Hours
Process concept; Process scheduling; Operations on processes; Inter-process communication. Multi-Threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms; Multiple-Processor scheduling; Thread scheduling.

Process Synchronization 7 Hours
Synchronization: The Critical section problem; Peterson’s solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.

Deadlocks 6 Hours
Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

Memory Management 7 Hours
Memory Management Strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing.

File System, Implementation of File System 7 Hours
File System: File concept; Access methods; Directory structure; File system mounting; File sharing; Protection. Implementing File System: File system structure; File system implementation; Directory implementation; Allocation methods; Free space management

Secondary Storage Structures, Protection 6 Hours
Mass storage structures; Disk structure; Disk attachment; Disk scheduling; Disk management; Swap space management. Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights, Capability-Based systems.

Case Study: The Linux Operating System 6 Hours
Linux history; Design principles; Kernel modules; Process management; Scheduling; Memory management; File systems, Input and output; Inter-process communication.

Text Books:
2. (Chapters: 1, 2, 3.1 to 3.4, 4.1 to 4.4, 5.1 to 5.5, 6.1 to 6.7, 7, 8.1 to 8.6, 9.1 to 9.6, 10, 11.1 to 11.5, 12.1 to 12.6, 17.1 to 17.8, 21.1 to 21.9)

Reference Books:
PART- A

Execute of the following programs using LEX:

1. Program to count the number of vowels and consonants in a given string.

2. Program to count the number of characters, words, spaces and lines in a given input file.

3. Program to count number of
 a. Positive and negative integers
 b. Positive and negative fractions

4. Program to count the numbers of comment lines in a given C program. Also eliminate them and copy that program into separate file.

5. Program to count the number of ‘scanf’ and ‘printf’ statements in a C program. Replace them with ‘readf’ and ‘writef’ statements respectively.

6. Program to recognize a valid arithmetic expression and identify the identifiers and operators present. Print them separately.

7. Program to recognize and count the number of identifiers in a given input file.

PART- B

Execute of the following programs using YACC:

1. Program to test the validity of a simple expression involving operators +, -, *, and /.

2. Program to recognize nested IF control statements and display the number of levels of nesting.

3. Program to recognize a valid arithmetic expression that uses operators +, -, *, and /.

4. Program to recognize a valid variable, which starts with a letter, followed by any number of letters or digits.

5. Program to evaluate an arithmetic expression involving operators +, -, *, and /.

6. Program to recognize strings ‘aaab’, ‘abbb’, ‘ab’ and ‘a’ using the grammar:
 \(a^n b^n, n \geq 0\)

7. Program to recognize the grammar \(a^n b^n, n \geq 10\).

Instructions:
In the examination, a combination of one LEX and one YACC problem has to be asked based on lots. Both will have equal weightages.
1. a. Write a JAVA Program to demonstrate Constructor Overloading and Method overloading.
 b. Write a JAVA Program to implement Inner class and demonstrate its Access Protections.

2. a. Write a JAVA Program to demonstrate Inheritance.
 b. Write a JAVA Program to demonstrate Exception Handling (Using Nested try catch and finally).

3. Write a JAVA program which has
 i. A Class called Account that creates account with 500Rs minimum balance, a deposit() method to deposit amount, a withdraw() method to withdraw amount and also throws LessBalanceException if an account holder tries to withdraw money which makes the balance become less than 500Rs.
 ii. A Class called LessBalanceException which returns the statement that says withdraw amount (___Rs) is not valid.
 iii. A Class which creates 2 accounts, both account deposit money and one account tries to withdraw more money which generates a LessBalanceException take appropriate action for the same.

4. Write a JAVA program using Synchronized Threads, which demonstrates Producer Consumer concept.

5. Write a JAVA program which has
 i. A Interface class for Stack Operations
 ii. A Class that implements the Stack Interface and creates a fixed length Stack.
 iii. A Class that implements the Stack Interface and creates a Dynamic length Stack.
 iv. A Class that uses both the above Stacks through Interface reference and does the Stack operations that demonstrates the runtime binding.

6. Write a JAVA program which has
 i. 2 classes which initializes a String in its constructor
 ii. A Generic class with 2 type Parameters
 iii. Create a Generic Class reference for the above 2 Class and try to print the message inside the constructor (Use to string method).

7. Write JAVA programs which demonstrates utilities of LinkedList Class

8. Write a JAVA Program which uses FileInputStream / FileOutPutStream Classes.

9. Write a JAVA Program which writes a object to a file (use transient variable also).

10. Write a JAVA program which uses Datagram Socket for Client Server Communication.

11. Write JAVA Applet programs which handles MouseEvent

12. Write JAVA Applet programs which handles KeyBoardEvent

13. Write a JAVA program which implements RMI.

14. Write a Swing Application which uses
 i. JTabbed Pane
 ii. Each Tab should use JPanel, which includes any one component given below in each Panel
 iii. ComboBox / List / Tree / Radiobutton
Note:
All the above Components should Listen to any one of their respective events and print appropriate message.
Consider the following relations:

Student (snum: integer, sname: string, major: string, level: string, age: integer)
Class (name: string, meets at: string, room: string, d: integer)
Enrolled (snum: integer, cname: string)
Faculty (fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-
class pair such that the student is enrolled in the class. Level is a two character code with 4 different
values (example: Junior: JR etc)

Write the following queries in SQL. No duplicates should be printed in any of the answers.

i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by Prof. Harshith

ii. Find the names of all classes that either meet in room R128 or have five or more Students
enrolled.

iii. Find the names of all students who are enrolled in two classes that meet at the same time.

iv. Find the names of faculty members who teach in every room in which some class is taught.

v. Find the names of faculty members for whom the combined enrollment of the courses that
they teach is less than five.

The following relations keep track of airline flight information:

Flights (no: integer, from: string, to: string, distance: integer, Departs: time, arrives: time, price:
real)
Aircraft (aid: integer, aname: string, cruisingrange: integer)
Certified (eid: integer, aid: integer)
Employees (eid: integer, fname: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; Every
pilot is certified for some aircraft, and only pilots are certified to fly.

Write each of the following queries in SQL.

i. Find the names of aircraft such that all pilots certified to operate them have salaries more
than Rs.80,000.

ii. For each pilot who is certified for more than three aircrafts, find the eid and the maximum
cruisingrange of the aircraft for which she or he is certified.

iii. Find the names of pilots whose salary is less than the price of the cheapest route from
Bengaluru to Frankfurt.

iv. For all aircraft with cruisingrange over 1000 Kms, .find the name of the aircraft and the
average salary of all pilots certified for this aircraft.

v. Find the names of pilots certified for some Boeing aircraft.

vi. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.

Consider the following database of student enrollment in courses & books adopted for each course.

i. Create the above tables by properly specifying the primary keys and the foreign keys.

ii. Enter at least five tuples for each relation.

iii. Demonstrate how you add a new text book to the database and make this book be adopted
by some department.

iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical
order for courses offered by the ‘CS’ department that use more than two books.

v. List any department that has all its adopted books published by a specific publisher.

vi. Generate suitable reports.

vii. Create suitable front end for querying and displaying the results.

Create suitable front end for querying and displaying the results.
4. The following tables are maintained by a book dealer.
 AUTHOR (author_id:int, name:string, city:string, country:string)
 PUBLISHER (publisher_id:int, name:string, city:string, country:string)
 CATEGORY (category_id:int, description:string)
 ORDER-DETAILS (order_no:int, book_id:int, quantity:int)

 i. Create the above tables by properly specifying the primary keys and the foreign keys.
 ii. Enter at least five tuples for each relation.
 iii. Give the details of the authors who have 2 or more books in the catalog and the price of
 the books is greater than the average price of the books in the catalog and the year of
 publication is after 2000.
 iv. Find the author of the book which has maximum sales.
 v. Demonstrate how you increase the price of books published by a specific publisher by
 10%.
 vi. Generate suitable reports.
 vii. Create suitable front end for querying and displaying the results.

5. Consider the following database for a banking enterprise
 BRANCH(branch-name:string, branch-city:string, assets:real)
 ACCOUNT(accno:int, branch-name:string, balance:real)
 DEPOSITOR(customer-name:string, accno:int)
 CUSTOMER(customer-name:string, customer-street:string, customer-city:string)
 LOAN(loan-number:int, branch-name:string, amount:real)
 BORROWER(customer-name:string, loan-number:int)

 i. Create the above tables by properly specifying the primary keys and the foreign keys
 ii. Enter at least five tuples for each relation
 iii. Find all the customers who have at least two accounts at the Main branch.
 iv. Find all the customers who have an account at all the branches located in a specific city.
 v. Demonstrate how you delete all account tuples at every branch located in a specific city.
 vi. Generate suitable reports.
 vii. Create suitable front end for querying and displaying the results.

Instructions:
1. The exercises are to be solved in an RDBMS environment like Oracle or DB2.
2. Suitable tuples have to be entered so that queries are executed correctly.
3. Front end may be created using either VB or VAJ or any other similar tool.
4. The student need not create the front end in the examination. The results of the queries may be
 displayed directly.
5. Relevant queries other than the ones listed along with the exercises may also be asked in the
 examination.
6. Questions must be asked based on lots.
IV SEMESTER

Topics in Enterprise Architecture - I

Subject Code: 10MCA41
IA Marks: 50
Hours/Week: 4
Exam Marks: 100
Total Hours: 52
Exam Hours: 3

JDBC Object 5 Hours
The Concept of JDBC, JDBC Driver Types, JDBC Packages, A Brief Overview of JDBC Process, Database Connection, Associating the JDBC/ODBC Bridge with the Database, Statement Objects, ResultSet, Transaction Processing, Metadata, Data Types, Exceptions.

JDBC and Embedded SQL 5 Hours
Model Programs, Tables, Indexing, Inserting Data into Tables, Selecting Data from a Table, Metadata, Updating Tables, Deleting Data from a Table, Joining Tables, Calculating Data, Grouping and Ordering Data, Subqueries, VIEW.

Servlets 6 Hours

Servlets - Sessions 5 Hours
Cookies, Session Tracking, Filter API, Multi-tier Applications Using Database Connectivity

Java Server Pages (JSP) 8 Hours
Introduction, Advantages of JSP, Developing First JSP, JSP Scripting Elements - (Directives, Declaratives, Scriplets, Expressions, Implicit Variables), Page Directives, JSTL, Standard Action, Custom Tags.

Java Beans 7 Hours
What is a Java Bean? Advantages of Java Beans, The Java Beans API – Introspector, property Descriptor, Event Descriptor, Method Descriptor, A Bean Example, JSP with Java Beans

Enterprise Java Beans 8 Hours
Deployment Descriptors; Session Java Bean, Entity Java Bean; Message-Driven Bean; The JAR File.

J2ME 8 Hours

Text Books:
1. Web Technologies: Html, Javascript, Php, Java, Jsp, Asp. Net, Xml and Ajax, Black Book by Kogent Learning Solutions Inc., 2009. (Chapters: 9, 10, 11, 12, 13 (UNIT 1-6))

Reference Books:
Overview
Introduction: FAQ's about software engineering, Professional and ethical responsibility.
Socio-Technical systems: Emergent system properties; Systems engineering; Organizations, people and computer systems; Legacy systems.

Software Processes

Requirements
Software Requirements: Functional and Non-functional requirements; User requirements; System requirements; Interface specification; The software requirements document.
Requirements Engineering Processes: Feasibility studies; Requirements elicitation and analysis; Requirements validation; Requirements management.

System models, Project Management
System Models: Context models; Behavioral models; Data models; Object models; Structured methods.
Project Management: Management activities; Project planning; Project scheduling; Risk management.

Software Design
Architectural Design: Architectural design decisions; System organization; Modular decomposition styles; Control styles.
Object-Oriented design: Objects and Object Classes; An Object-Oriented design process; Design evolution.

Development
Rapid Software Development: Agile methods; Extreme programming; Rapid application development.
Software Evolution: Program evolution dynamics; Software maintenance; Evolution processes; Legacy system evolution.

Verification and Validation
Verification and Validation: Planning; Software inspections; Automated static analysis; Verification and formal methods.
Software testing: System testing; Component testing; Test case design; Test automation.

Management
Managing People: Selecting staff; Motivating people; Managing people; The People Capability Maturity Model.
Software Cost Estimation: Productivity; Estimation techniques; Algorithmic cost modeling, Project duration and staffing.

Text Books:
 (Chapters:- 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 21, 22, 23, 25, 26)

Reference Books:
Web Programming

Subject Code: 10MCA43
I.A. Marks : 50
Hours/Week : 04
Exam Hours: 03
Total Hours : 52
Exam Marks: 100

Fundamentals of Web, XHTML, CSS
CSS: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

Javascript
Overview of Javascript, Object orientation and Javascript, Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions, Errors in scripts, Examples.

Javascript and HTML Documents, Dynamic Documents with Javascript
Introduction to dynamic documents, Positioning elements, Moving elements, Element visibility, Changing colors and fonts, Dynamic content, Stacking elements, Locating the mouse cursor, Reacting to a mouse click, Slow movement of elements, Dragging and dropping elements.

XML

Perl, CGI Programming
Origins and uses of Perl, Scalars and their operations, Assignment statements and simple input and output, Control statements, Fundamentals of arrays, Hashes, References, Functions, Pattern matching, File input and output; Examples.
The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module; A survey example; Cookies.
Database access with Perl and MySQL

PHP
Origins and uses of PHP, Overview of PHP, General syntactic characteristics, Primitives, operations and expressions, Output, Control statements, Arrays, Functions, Pattern matching, Form handling, Files, Cookies, Session tracking, Database access with PHP and MySQL.

Ruby, Rails
Origins and uses of Ruby, Scalar types and their operations, Simple input and output, Control statements, Arrays, Hashes, Methods, Classes, Code blocks and iterators, Pattern matching.
Overview of Rails, Document requests, Processing forms, Rails applications with Databases, Layouts.

Text Books:
 (Listed topics only from Chapters 1 to 9, 11 to 15)

Reference Books:
Design and Analysis of Algorithms

<table>
<thead>
<tr>
<th>Subject Code: 10MCA44</th>
<th>I.A. Marks: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours/Week: 4</td>
<td>Exam Hours: 03</td>
</tr>
<tr>
<td>Total Hours: 52</td>
<td>Exam Marks: 100</td>
</tr>
</tbody>
</table>

Introduction
7 Hours
Notion of Algorithm, Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms

Divide and Conquer
6 Hours
Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance.

The Greedy Method
7 Hours
The General Method, Knapsack Problem, Job Sequencing with Deadlines, Minimum-Cost Spanning Trees: Prim’s Algorithm, Kruskal’s Algorithm; Single Source Shortest Paths.

Dynamic Programming
6 Hours
The General Method, Warshall’s Algorithm, Floyd’s Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths: General Weights, 0/1 Knapsack, The Traveling Salesperson problem.

Decrease-and-Conquer Approaches, Space-Time Tradeoffs
7 Hours

Limitations of Algorithmic Power and Coping with them
7 Hours

Coping with Limitations of Algorithmic Power
6 Hours
Backtracking: n - Queens problem, Hamiltonian Circuit Problem, Subset – Sum Problem.
Branch-and-Bound: Assignment Problem, Knapsack Problem, Traveling Salesperson Problem.
Approximation Algorithms for NP-Hard Problems – Traveling Salesperson Problem, Knapsack Problem

PRAM Algorithms
6 Hours
Introduction, Computational Model, Parallel Algorithms for Prefix Computation, List Ranking, and Graph Problems

Text Books:
 (Listed topics only from the Chapters 1, 2, 3, 5, 7, 8, 10, 11)
 (Listed topics only from the Chapters 3, 4, 5, 13)

Reference Books:
Computer Graphics and Visualization

Subject Code: MCA451
I.A. Marks: 05
Hours/Week: 04
Exam Hours: 03
Total Hours: 52
Exam Marks: 100

Introduction
7 Hours
Applications of computer graphics; A graphics system; Images: Physical and synthetic; Imaging Systems; The synthetic camera model; The programmer’s interface; Graphics architectures; Programmable Pipelines; Performance Characteristics
Graphics Programming: The Sierpinski gasket; Programming Two Dimensional Applications.

The OpenGL
6 Hours
The OpenGL API; Primitives and attributes; Color; Viewing; Control functions; The Gasket program; Polygons and recursion; The three-dimensional gasket; Plotting Implicit Functions

Input and Interaction
7 Hours
Interaction; Input devices; Clients and Servers; Display Lists; Display Lists and Modeling; Programming Event Driven Input; Menus; Picking; A simple CAD program; Building Interactive Models; Animating Interactive Programs; Design of Interactive Programs; Logic Operations

Geometric Objects and Transformations
11 Hours
Scalars, Points, and Vectors; Three-dimensional Primitives; Coordinate Systems and Frames; Modeling a Colored Cube; Affine Transformations; Rotation, Translation and Scaling; Geometric Objects and Transformations; Transformation in Homogeneous Coordinates; Concatenation of Transformations; OpenGL Transformation Matrices; Interfaces to three-dimensional applications; Quaternions

Viewing
7 Hours
Classical and computer viewing; Viewing with a Computer; Positioning of the camera; Simple projections; Projections in OpenGL; Hidden-surface removal; Interactive Mesh Displays; Parallel-projection matrices; Perspective-projection matrices; Projections and Shadows.

Lighting and Shading
6 Hours
Light and Matter; Light Sources; The Phong Lighting model; Computation of vectors; Polygonal Shading; Approximation of a sphere by recursive subdivisions; Light sources in OpenGL; Specification of materials in OpenGL; Shading of the sphere model; Global Illumination.

Implementation
8 Hours
Basic Implementation Strategies; Four major tasks; Clipping: Line-segment clipping; Polygon clipping; Clipping of other primitives; Clipping in three dimensions; Rasterization; Bresenham’s algorithm; Polygon Rasterization; Hidden-surface removal; Antialiasing; Display considerations.

Text Books:

Reference Books:
UNIX Systems Programming

Subject Code: **10MCA452**
I.A. Marks : **50**
Hours/Week : **04**
Exam Hours: **03**
Total Hours: **52**
Exam Marks: **100**

Introduction
6 Hours
UNIX and POSIX APIs: The POSIX APIs, The UNIX and POSIX Development Environment, API Common Characteristics.

UNIX Files
6 Hours

UNIX File APIs
7 Hours
General File APIs, File and Record Locking, Directory File APIs, Device File APIs, FIFO File APIs, Symbolic Link File APIs, General File Class, regfile Class for Regular Files, dirfile Class for Directory Files, FIFO File Class, Device File Class, Symbolic Link File Class, File Listing Program.

UNIX Processes
7 Hours

Process Control
7 Hours

Signals and Daemon Processes
7 Hours
Daemon Processes: Introduction, Daemon Characteristics, Coding Rules, Error Logging, Single-instance daemons; Daemon conventions; Client-Server Model.

Interprocess Communication
6 Hours
Introduction; Pipes, popen, pclose Functions; Coprocesses; FIFOs; XSI IPC; Message Queues; Semaphores

Network IPC: Sockets
6 Hours
Introduction; Socket Descriptors; Addressing; Connection establishment; Data transfer; Socket options; Out-of-band data; Nonblocking and asynchronous I/O.

Text Books:
 (Chapters 1, 5, 6, 7, 8, 9)
 (Chapters 7, 8, 9, 13, 15, 16)

Reference Books:
Multimedia Systems

Introduction, Media and Data Streams, Audio Technology 7 Hours
Multimedia Elements; Multimedia Applications; Multimedia Systems Architecture; Evolving Technologies for Multimedia Systems; Defining Objects for Multimedia Systems; Multimedia Data Interface Standards; The need for Data Compression; Multimedia Databases.

Sound: Frequency, Amplitude, Sound Perception and Psychoacoustics; Audio Representation on Computers; Three Dimensional Sound Projection; Music and MIDI Standards; Speech Signals; Speech Output; Speech Input; Speech Transmission.

Graphics and Images, Video Technology, Computer-Based Animation 7 Hours
Capturing Graphics and Images Computer Assisted Graphics and Image Processing; Reconstructing Images; Graphics and Image Output Options.
Basics; Television Systems; Digitalization of Video Signals; Digital Television; Basic Concepts; Specification of Animations; Methods of Controlling Animation; Display of Animation; Transmission of Animation; Virtual Reality Modeling Language.

Data Compression 12 Hours
Storage Space; Coding Requirements; Source, Entropy, and Hybrid Coding; Basic Compression Techniques; JPEG: Image Preparation, Lossy Sequential DCT-based Mode, Expanded Lossy DCT-based Mode, Lossless Mode, Hierarchical Mode.
H.261 (Px64) and H.263: Image Preparation, Coding Algorithms, Data Stream, H.263+ and H.263L; MPEG: Video Encoding, Audio Coding, Data Stream, MPEG-2, MPEG-4, MPEG-7; Fractal Compression.

Optical Storage Media 6 Hours
History of Optical Storage; Basic Technology; Video Discs and Other WORMs; Compact Disc Digital Audio; Compact Disc Read Only Memory; CD-ROM Extended Architecture; Further CD-ROM-Based Developments; Compact Disc Recordable; Compact Disc Magneto-Optical; Compact Disc Read/Write; Digital Versatile Disc.

Content Analysis 6 Hours
Simple Vs. Complex Features; Analysis of Individual Images; Analysis of Image Sequences; Audio Analysis; Applications.

Data and File Format Standards 7 Hours
Rich-Text Format; TIFF File Format; Resource Interchange File Format (RIFF); MIDI File Format; JPEG DIB File Format for Still and Motion Images; AVI Indeo File Format; MPEG Standards; TWAIN

Multimedia Application Design 7 Hours
Multimedia Application Classes; Types of Multimedia Systems; Virtual Reality Design; Components of Multimedia Systems; Organizing Multimedia Databases; Application Workflow Design Issues; Distributed Application Design Issues.

Text Books:
 (Chapters 2, 3, 4, 5, 6, 7, 8, 9)
 (Chapters 1, 3, 7)
Reference Books:

Introduction

6 Hours
Machine perception, an example; Pattern Recognition System; The Design Cycle; Learning and Adaptation

Bayesian Decision Theory

7 Hours
Introduction, Bayesian Decision Theory; Continuous Features, Minimum error rate, classification, classifiers, discriminant functions, and decision surfaces; The normal density; Discriminant functions for the normal density

Maximum-likelihood and Bayesian Parameter Estimation

7 Hours
Introduction; Maximum-likelihood estimation; Bayesian Estimation; Bayesian parameter estimation: Gaussian Case, general theory; Hidden Markov Models

Non-parametric Techniques

6 Hours
Introduction; Density Estimation; Parzen windows; k− Nearest- Neighbor Estimation; The Nearest-Neighbor Rule; Metrics and Nearest-Neighbor Classification

Linear Discriminant Functions

7 Hours
Introduction; Linear Discriminant Functions and Decision Surfaces; Generalized Linear Discriminant Functions; The Two-Category Linearly Separable case; Minimizing the Perception Criterion Functions; Relaxation Procedures; Non-separable Behavior; Minimum Squared-Error procedures; The Ho-Kashyap procedures

Stochastic Methods

6 Hours
Introduction; Stochastic Search; Boltzmann Learning; Boltzmann Networks and Graphical Models; Evolutionary Methods

Non-Metric Methods

6 Hours
Introduction; Decision Trees; CART; Other Tree Methods; Recognition with Strings; Grammatical Methods

Unsupervised Learning and Clustering

7 Hours
Introduction; Mixture Densities and Identifiability; Maximum-Likelihood Estimates; Application to Normal Mixtures; Unsupervised Bayesian Learning; Data Description and Clustering; Criterion Functions for Clustering

Text Books:

Reference Books:

Principles of User Interface Design

Introduction

8 Hours

Usability of Interactive Systems: Introduction, Usability Requirements, Usability measures, Usability Motivations, Universal Usability, Goals for our profession

Guideline, principles, and Theories: Introduction, Guidelines, principles, Theories, Object-Action Interface Model

Development Processes

5 Hours

Evaluating Interface Designs

7 Hours

Interaction Styles

8 Hours

Direct Manipulation and Virtual Environments: Introduction, Examples of Direct Manipulation, 3D Interfaces, Teleoperation and Augmented Reality.

Menu Selection, Form Fillin, and Dialog Boxes: Introduction, Task-Related Menu Organization, Single Menus, Combinations of Multiple Menus, Content Organization, Fast Movement Through Menus, Data Entry with Menus: Form Fillin, Dialog Boxes, and Alternatives, Audio Menus and Menus for small Displays.

Command and Natural Languages

8 Hours

Interaction Devices: Introduction, Keyboards and Keypads, Pointing Devices, Speech and Auditory interfaces, Displays-Small and Large, Printers.

Design Issues

6 Hours

Quality of Service: Introduction, Models of Response-Time Impacts, Expectations and Attitudes, User Productivity, Variability in Response Time, Frustrating Experiences.

User Manuals, Online Help, and Tutorials

5 Hours

Introduction, Paper versus Online Manuals, Reading from Paper Verses from Displays, Shaping the Content of the Manuals, Online Manuals and Help, Online Tutorials, Demonstrations, and Guides, Online Communities for User Assistance, The Development Process.

Information Search and Visualization:

5 Hours

Introduction, Search in Textual Documents and Database Querying, Multimedia Document Searches, Advanced Filtering and Search Interfaces, Information Visualization

Text Books:

Reference Books:

Review of Network Models 5 Hours
Layered tasks; The OSI model and layers in the OSI model; TCP / IP protocol suite; Addressing

SONET / SDH 5 Hours
Architecture; SONET layers; SONET frames; STS multiplexing; SONET networks; Virtual tributaries

Frame Relay and ATM 4 Hours
Frame relay; ATM and ATM LANs

IPv6, Address Mapping and Error Reporting 6 Hours
IPv6: Advantages, Packet format, and Extension headers; Transition from IPv4 to IPv6: Dual stack, Tunneling, and Header translation; Address mapping: ARP, RARP, BOOTP, and DHCP; Error reporting: ICMP.

Multicast Routing Protocols 4 Hours
Unicast, multicast and broadcast; Applications; Multicasting routing; Routing protocols.

SCTP 4 Hours
SCTP services; SCTP features; Packet format; An SCTP association; Flow control; Error control; Congestion control.

Congestion Control and Quality of Service 6 Hours
Data traffic; Congestion and congestion control; Congestion control in TCP, Frame relay; Quality of Service; Techniques to improve QoS; Integrated services; Differentiated services

Multimedia 6 Hours
Digitizing audio and video; Audio and video compression; Streaming stored audio / video; Streaming live audio / video; Real-time interactive audio / video; RTP; RTCP; VoIP.

Mobile Ad-Hoc Networks, Wireless Sensor Networks 12 Hours
Overview of wireless ad-hoc networks; Routing in ad-hoc networks; Routing protocols for ad-hoc networks; Security of ad-hoc networks; Sensor networks and protocol structures; Communication energy model; Clustering protocols; Routing protocols; Zigbee technology and IEEE 802.15.4

Text Books:

References:
1. Write a JAVA Program to insert data into Student DATA BASE and retrieve info based on particular queries (queries can be given which covers all the topics of 2nd UNIT).

2. Write a JAVA Servlet Program to implement a dynamic HTML using Servlet (user name and password should be accepted using HTML and displayed using a Servlet).

3. Write a JAVA Servlet Program to Download a file and display it on the screen (A link has to be provided in HTML, when the link is clicked corresponding file has to be displayed on Screen)

4. Write a JAVA Servlet Program to implement RequestDispatcher object (use include() and forward() methods).

5. Write a JAVA Servlet Program to implement and demonstrate get() and Post methods(Using HTTP Servlet Class).

6. Write a JAVA Servlet Program to implement sendRedirect() method(using HTTP Servlet Class).

7. Write a JAVA Servlet Program to implement sessions (Using HTTP Session Interface).

8. a. Write a JAVA JSP Program to print 10 even and 10 odd number.
 b. Write a JAVA JSP Program to implement verification of a particular user login and display a welcome page.

9. Write a JAVA JSP Program to get student information through a HTML and create a JAVA Bean Class, populate Bean and display the same information through another JSP.

10. Write a JAVA JSP Program which uses <jsp:plugin> tag to run a applet.

11. Write a JAVA JSP Program which implements nested tags and also uses TagSupport Class.

12. An EJB application that demonstrates Session Bean.

13. An EJB application that demonstrates Entity Bean.

14. An EJB application that demonstrates MDB.
Web Programming Laboratory

Subject Code: 10MCA47
L.A. Marks : 50
Hours/Week : 03
Exam Hours: 03
Total Hours : 42
Exam Marks: 50

1. Develop and demonstrate a XHTML file that includes Javascript script for the following problems:
 a) Input: A number n obtained using prompt
 Output: The first n Fibonacci numbers
 b) Input: A number n obtained using prompt
 Output: A table of numbers from 1 to n and their squares using alert

2. a) Develop and demonstrate, using Javascript script, a XHTML document that collects the USN (the valid format is: A digit from 1 to 4 followed by two upper-case characters followed by two digits followed by two upper-case characters followed by three digits; no embedded spaces allowed) of the user. Event handler must be included for the form element that collects this information to validate the input. Messages in the alert windows must be produced when errors are detected.
 b) Modify the above program to get the current semester also (restricted to be a number from 1 to 8)

3. a) Develop and demonstrate, using Javascript script, a XHTML document that contains three short paragraphs of text, stacked on top of each other, with only enough of each showing so that the mouse cursor can be placed over some part of them. When the cursor is placed over the exposed part of any paragraph, it should rise to the top to become completely visible.
 b) Modify the above document so that when a paragraph is moved from the top stacking position, it returns to its original position rather than to the bottom.

4. a) Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include USN, Name, Name of the College, Brach, Year of Joining, and e-mail id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.
 b) Create an XSLT style sheet for one student element of the above document and use it to create a display of that element.

5. a) Write a Perl program to display various Server informations like Server Name, Server Software, Server protocol, CGI Revision etc.
 b) Write a Perl program to accept UNIX command from a HTML form and to display the output of the command executed.

6. a) Write a Perl program to accept the User Name and display a greeting message randomly chosen from a list of 4 greeting messages.
 b) Write a Perl program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.

7. Write a Perl program to display a digital clock which displays the current time of the server.

8. Write a Perl program to insert name and age information entered by the user into a table created using MySQL and to display the current contents of this table.

9. Write a PHP program to store current date-time in a COOKIE and display the ‘Last visited on’ date-time on the web page upon reopening of the same page.

10. Write a PHP program to store page views count in SESSION, to increment the count on each refresh, and to show the count on web page.

11. Create a XHTML form with Name, Address Line 1, Address Line 2, and E-mail text fields. On submitting, store the values in MySQL table. Retrieve and display the data based on Name.

12. Build a Rails application to accept book information viz. Accession number, title, authors, edition and publisher from a web page and store the information in a database and to search for a book with the title specified by the user and to display the search results with proper headings.

Note: In the examination each student picks one question from the lot of all 12 questions.
Design, develop and implement the specified algorithms for the following problems using C/C++ Language in LINUX / Windows environment.

1. Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n.
 The elements can be read from a file or can be generated using the random number generator.

2. Using OpenMP, implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

3. a. Obtain the Topological ordering of vertices in a given digraph.
 b. Compute the transitive closure of a given directed graph using Warshall's algorithm.

4. Implement 0/1 Knapsack problem using Dynamic Programming.

5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.

6. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.

7. a. Print all the nodes reachable from a given starting node in a digraph using BFS method.
 b. Check whether a given graph is connected or not using DFS method.

8. Find a subset of a given set $S = \{s_1,s_2,\ldots,s_n\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and $d = 9$ there are two solutions $\{1,2,6\}$ and $\{1,8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.

9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.

10. Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm.

11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using OpenMP and determine the speed-up achieved.

12. Implement N Queen's problem using Back Tracking.

Note: In the examination each student picks one question from the lot of all 12 questions.
Introduction, Modeling Concepts, class Modeling
7 Hours
What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development; OO modeling history
Modeling as Design Technique: Modeling; abstraction; The three models.
Class Modeling: Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical tips.

Advanced Class Modeling, State Modeling
6 Hours
Advanced object and class concepts; Association ends; N-ary associations; Aggregation; Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived data; Packages; Practical tips.
State Modeling: Events, States, Transitions and Conditions; State diagrams; State diagram behavior; Practical tips.

Advanced State Modeling, Interaction Modeling
6 Hours
Advanced State Modeling: Nested state diagrams; Nested states; Signal generalization; Concurrency; A sample state model; Relation of class and state models; Practical tips.
Interaction Modeling: Use case models; Sequence models; Activity models.
Use case relationships; Procedural sequence models; Special constructs for activity models.

Process Overview, System Conception, Domain Analysis
7 Hours
Process Overview: Development stages; Development life cycle.
System Conception: Devising a system concept; Elaborating a concept; Preparing a problem statement.
Domain Analysis: Overview of analysis; Domain class model; Domain state model; Domain interaction model; Iterating the analysis.

Application Analysis, System Design
7 Hours
Application Analysis: Application interaction model; Application class model; Application state model; Adding operations.
Overview of system design; Estimating performance; Making a reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation of sub-systems; Management of data storage; Handling global resources; Choosing a software control strategy; Handling boundary conditions; Setting the trade-off priorities; Common architectural styles; Architecture of the ATM system as the example.

Class Design, Implementation Modeling, Legacy Systems
7 Hours
Class Design: Overview of class design; Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards, Refactoring; Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a class design; ATM example.
Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-tuning generalizations; Realizing associations; Testing.
Legacy Systems: Reverse engineering; Building the class models; Building the interaction model; Building the state model; Reverse engineering tips; Wrapping; Maintenance.

Design Patterns, Idioms
12 Hours
What is a pattern and what makes a pattern? Pattern categories; Relationships between patterns; Pattern description
Communication Patterns: Forwarder-Receiver; Client-Dispatcher-Server; Publisher-Subscriber.
Management Patterns: Command processor; View handler.
Idioms: Introduction; what can idioms provide? Idioms and style; Where to find idioms; Counted Pointer example

Text Books:
2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2006. (Chapters 1, 3.5, 3.6, 4)

Reference Books:
Introduction

8 Hours

When simulation is the appropriate tool and when it is not appropriate; Advantages and disadvantages of Simulation; Areas of application; Systems and system environment; Components of a system; Discrete and continuous systems; Model of a system; Types of Models; Discrete-Event System Simulation; Steps in a Simulation Study.

The basics of Spreadsheet simulation, Simulation example: Simulation of queuing systems in a spreadsheet.

General Principles, Simulation Software

6 Hours

Simulation in Java; Simulation in GPSS

Statistical Models in Simulation

6 Hours

Review of terminology and concepts; Useful statistical models; Discrete distributions; Continuous distributions; Poisson process; Empirical distributions.

Queuing Models

6 Hours

Characteristics of queuing systems; Queuing notation; Long-run measures of performance of queuing systems; Steady-state behavior of M/G/1 queue; Networks of queues; Rough-cut modeling: An illustration..

Random-Number Generation, Random-Variate Generation

8 Hours

Properties of random numbers; Generation of pseudo-random numbers; Techniques for generating random numbers; Tests for Random Numbers

Random-Variate Generation: Inverse transform technique; Acceptance-Rejection technique; Special properties.

Input Modeling

6 Hours

Data Collection; Identifying the distribution with data; Parameter estimation; Goodness of Fit Tests; Fitting a non-stationary Poisson process; Selecting input models without data; Multivariate and Time-Series input models.

Estimation of Absolute Performance

6 Hours

Types of simulations with respect to output analysis; Stochastic nature of output data; Absolute measures of performance and their estimation; Output analysis for terminating simulations; Output analysis for steady-state simulations.

Verification, Calibration, and Validation; Optimization

6 Hours

Model building, verification and validation; Verification of simulation models; Calibration and validation of models. Optimization via Simulation

Text Books:

 (Listed topics only from Chapters1 to 12)

Reference Books:

Topics in Enterprise Architecture - II

Subject Code: 10MCA53
I.A. Marks: 50
Hours/Week: 04
Exam Hours: 03
Total Hours: 52
Exam Marks: 100

The philosophy of .NET
6 Hours
- Understanding the Previous State of Affairs, The .NET Solution, The Building Block of the .NET Platform (CLR, CTS, and CLS), The Role of the .NET Base Class Libraries, What C# Brings to the Table, An Overview of .NET Binaries (aka Assemblies), the Role of the Common Intermediate Language, The Role of .NET Type Metadata, The Role of the Assembly Manifest, Compiling CIL to Platform-Specific Instructions, Understanding the Common Type System, Intrinsic CTS Data Types, Understanding the Common Languages Specification, Understanding the Common Language Runtime A tour of the .NET Namespaces, Increasing Your Namespace Nomenclature, Deploying the .NET Runtime

Building C# Applications
6 Hours

C# Language Fundamentals.
8 Hours

Object- Oriented Programming with C#
6 Hours
- Forms Defining of the C# Class, Definition the “Default Public Interface” of a Type, Recapping the Pillars of OOP, The First Pillar: C#’s Encapsulation Services, Pseudo-Encapsulation: Creating Read-Only Fields, The Second Pillar: C#’s Inheritance Supports, keeping Family Secrets: The “Protected” Keyword, Nested Type Definitions, The Third Pillar: C#’s Polymorphic Support, Casting Between .

Exceptions and Object Lifetime
6 Hours
- Ode to Errors, Bugs, and Exceptions, The Role of .NET Exception Handling, the System. Exception Base Class, Throwing a Generic Exception, Catching Exception, CLR System – Level Exception(System.System Exception), Custom Application-Level Exception(System. System Exception), Handling Multiple Exception, The Family Block, the Last Chance Exception Dynamically Identifying Application – and System Level Exception Debugging System Exception Using VS. NET, Understanding Object Lifetime, the CIT of ‘new’, The Basics of Garbage Collection, Finalization a Type, The Finalization Process, Building an Ad Hoc Destruction Method, Garbage Collection Optimizations, The System. GC Type.

Interfaces and Collections
6 Hours
- Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (IComparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).
Callback Interfaces, Delegates, and Events, Advanced Techniques 8 Hours
Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using) Events. The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET, Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

Understanding .NET Assemblies, 6 Hours
Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary’s, Manifest, Exploring the CarLibrary’s Types, Building the Multifile Assembly, Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Shared Names, Building a Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

Text Books:

Reference Books:
Information Retrieval

Introduction, Retrieval Strategies
Introduction; Retrieval Strategies: Vector Space Model; Probabilistic Retrieval strategies, Some More Retrieval Strategies: Language Models; Inference Networks; Extended Boolean Retrieval; Latent Semantic Indexing; Neural Networks; Genetic Algorithms; Fuzzy Set Retrieval.

Retrieval Utilities
Relevance feedback; Clustering; Passage-Based Retrieval; N-Grams; Regression Analysis; Thesauri; Semantic Networks; Parsing.

Indexing and Searching
Introduction; Other indices for text; Boolean queries; Sequential searching; Pattern matching; Structural queries; Compression.

Cross-Language Information Retrieval and Efficiency
Introduction; Crossing the language barrier; Cross-Language retrieval strategies; Cross language utilities. Duplicate Document Detection.

Integrating Structured Data and Text
Review of the relational model; A historical progression; Information retrieval as a relational application; Semi-structured search using a relational schema; Multi-dimensional data model.

Parallel Information Retrieval, Distributed Information Retrieval
Parallel text scanning; Parallel indexing; Clustering and classification; Large parallel systems; A theoretic model of distributed information retrieval; Web search; Result fusion; Peer-to-Peer information systems; Other architectures.

Multimedia IR
Introduction; data modeling; Query languages; Spatial access methods; A general multimedia indexing approach; One-dimensional time series; Two-dimensional color images; Automatic picture extraction.

Text Books:

Reference Books:
Data Warehousing and Data Mining

Subject Code: 10MCA542
I.A. Marks : 50
Hours/Week : 04
Exam Hours: 03
Total Hours : 52
Exam Marks: 100

Data Warehousing 6 Hours
Introduction, Operational Data Stores (ODS), Extraction Transformation Loading (ETL), Data Warehouses Design Issues, Guidelines for Data Warehouse Implementation, Data Warehouse Metadata

Online Analytical Processing (OLAP) 6 Hours
Introduction, Characteristics of OLAP systems, Multidimensional view and Data cube, Data Cube Implementations, Data Cube operations, Implementation of OLAP and overview on OLAP Softwares.

Data Mining 6 Hours
Introduction, Challenges, Data Mining Tasks, Types of Data, Data Preprocessing, Measures of Similarity and Dissimilarity, Data Mining Applications

Association Analysis: Basic Concepts and Algorithms 8 Hours
Frequent Itemset Generation, Rule Generation, Compact Representation of Frequent Itemsets, Alternative methods for generating Frequent Itemsets, FP Growth Algorithm, Evaluation of Association Patterns

Classification 12 Hours

Clustering Techniques 8 Hours
Overview, Features of cluster analysis, Types of Data and Computing Distance, Types of Cluster Analysis Methods, Partitional Methods, Hierarchical Methods, Density Based Methods, Quality and Validity of Cluster Analysis

Web Mining 6 Hours
Introduction, Web content mining, Text Mining, Unstructured Text, Text clustering, Mining Spatial and Temporal Databases.

Text Books:

Reference Books:
2. Jiawei Han and Micheline Kamber: Data Mining - Concepts and Techniques, 2nd Edition, Morgan Kaufmann Publisher, 2006.
Supply Chain Management

Subject Code: 10MCA543
I.A. Marks : 50
Hours/Week : 04
Exam Hours: 03
Total Hours : 52
Exam Marks: 100

Introduction to Supply Chain, Performance of Supply Chain 6 Hours
What is a Supply Chain; Decision phases in a supply chain; Process view of a Supply Chain; The importance of Supply Chain Flows; Examples of Supply Chains.
Competitive and Supply Chain strategies; Achieving strategic fit; Expanding strategic scope.

Supply Chain drivers and Obstacles, Designing Distribution Network 6 Hours
Drivers of Supply Chain Performance; A framework for structuring drivers; Facilities, Inventory, Transportation, and Information; Obstacles to achieve strategic fit
The role of distribution in the Supply Chain; factors influencing distribution network design; Design options for a distribution network; the value of distributors in the Supply Chain; Distribution Networks in practice.

Network Design 7 Hours
The role of network design in the Supply Chain; Factors influencing Network design Decisions; A framework for Network Design Decisions; Models for facility Location and Capacity Allocation; making Network Design decisions in practice.
The impact of uncertainty on Network design; Discounted cash flow analysis; Representations of uncertainty; Evaluating Network Design decisions using Decision Trees; Making Supply Chain decisions under uncertainty in practice.

Demand Forecasting, Aggregate Planning 7 Hours
The role of forecasting in a Supply Chain; Characteristics of forecast; Components of a forecast and forecasting methods; Basic approach of Demand forecasting; Time series forecasting methods; Measures of forecast errors; The role of aggregate planning in a supply Chain; The aggregate planning problem; Aggregate planning strategies.

Inventory Management 6 Hours
The role of cycle inventory in a supply Chain; Economies of scale to exploit fixed costs, quantity discounts; Short-term discounting; Managing multi-echelon cycle inventory; Estimating cycle inventory related costs in practice.

Transportation 7 Hours
The role of transportation in the Supply Chain; Factors affecting transportation decisions; Modes of transportation and their performance characteristics; Design options for a transportation network; Trade-offs in transportation design; Tailored transportation; Routing and scheduling in transportation; Making transportation decisions in practice.

Pricing and Revenue Management, Coordination 7 Hours
The role of revenue management in Supply Chain; revenue management for multiple customer segments, perishable assets, seasonal demand, and bulk and spot contracts; Using revenue management in practice
Lack of Supply Chain coordination and Bullwhip effect; Effect of lack of coordination on performance; Obstacles to coordination in the Supply Chain; managerial levers to achieve coordination; Building strategic partnerships and trust within a supply Chain; Achieving coordination in practice.

IT, Internet and Supply Chain 6 Hours
The role of IT in the Supply Chain; The Supply Chain IT framework; CRM; Internal SCM; Supplier Relationship Management; The transaction management foundation; The future if IT in SCM; Supply Chain It in practice.
The role of E-Business in Supply Chain; The E-Business framework; The B2B addition to the E-Business framework; E-Business in practice

Text Books:
 (Chapters 1, 2, 4, 4, 5, 6, 7, 8.1 to 8.3, 10, 14, 15, 16, 17, 18)
Reference Books:

Network Management

Introduction

Basic Foundations: Standards, Models, and Language
Network Management Standards, Network Management Model, Organization Model, Information Model – Management Information Trees, Managed Object Perspectives, Communication Model; ASN.1-Terminology, Symbols, and Conventions, Objects and Data Types, Object Names, An Example of ASN.1 from ISO 8824; Encoding Structure; Macros, Functional Model.

SNMPv1 Network Management

SNMP Management – RMON
Remote Monitoring, RMON SMI and MIB, RMON1- RMON1 Textual Conventions, RMON1 Groups and Functions, Relationship Between Control and Data Tables, RMON1 Common and Ethernet Groups, RMON Token Ring Extension Groups, RMON2 – The RMON2 Management Information Base, RMON2 Conformance Specifications; ATM Remote Monitoring, A Case Study of Internet Traffic Using RMON.

Broadband Network Management: ATM Networks

Broadband Network Management

Network Management Applications

Text Books:

Reference Books:
Compiler Design

Subject Code: 10MCA545
IA Marks: 50
Hours/ Week: 04
Exam Hours: 03
Total Hours: 52
Exam Marks: 100

Introduction, Lexical analysis
Language processors; The structure of a Compiler; The evolution of programming languages; The science of building a compiler; Applications of Compiler technology; Programming language basics; Lexical analysis: The Role of Lexical Analyzer; Input Buffering; Specifications of Tokens; Recognition of Tokens.

Syntax Analysis - 1
Introduction; Context-free Grammars; Writing a Grammar; Top-down Parsing

Syntax Analysis - 2
Bottom-up Parsing; Introduction to LR Parsing: Simple LR.

Syntax Analysis - 3
More powerful LR parsers; Using ambiguous grammars; Parser Generators.

Syntax-Directed Translation
Syntax-Directed definitions; Evaluation order for SDDs; Applications of Syntax-directed translation; Syntax-directed translation schemes

Intermediate Code Generation
Variants of syntax trees; Three-address code; Types and declarations; Translation of expressions; Type checking; Control flow; Back patching; Switch statements; Intermediate code for procedures.

Run-Time Environments
Storage Organization; Stack allocation of space; Access to non-local data on the stack; Heap management; Introduction to garbage collection

Code Generation
Issues in the design of Code Generator; The Target language; Addresses in the target code; Basic blocks and Flow graphs; Optimization of basic blocks; A Simple Code Generator.

Text Books:
 (Chapters 1, 3.1 to 3.4, 4, 5.1 to 5.4, 6, 7.1 to 7.5, 8.1 to 8.6)

Reference Books:
Software Architectures

Introduction
The Architecture Business Cycle: Where do architectures come from? Software processes and the architecture business cycle; What makes a “good” architecture? What software architecture is and what it is not; Other points of view; Architectural patterns, reference models and reference architectures; Importance of software architecture; Architectural structures and views.

Architectural Styles and Case Studies
Architectural styles; Pipes and filters; Data abstraction and object-oriented organization; Event-based, implicit invocation; Layered systems; Repositories; Interpreters; Process control; Other familiar architectures; Heterogeneous architectures.
Case Studies: Keyword in Context; Instrumentation software; Mobile robotics; Cruise control; Three vignettes in mixed style.

Quality
Functionality and architecture; Architecture and quality attributes; System quality attributes; Quality attribute scenarios in practice; Other system quality attributes; Business qualities; Architecture qualities.
Achieving Quality: Introducing tactics; Availability tactics; Modifiability tactics; Performance tactics; Security tactics; Testability tactics; Usability tactics; Relationship of tactics to architectural patterns; Architectural patterns and styles.

Architectural Patterns – 1
Introduction; From mud to structure: Layers, Pipes and Filters, Blackboard.

Architectural Patterns – 2
Distributed Systems: Broker; Interactive Systems: MVC, Presentation-Abstraction-Control

Architectural Patterns – 3
Adaptable Systems: Microkernel; Reflection.

Some Design Patterns
Structural decomposition: Whole – Part; Organization of work: Master – Slave; Access Control: Proxy.

Designing and Documenting Software Architecture
Architecture in the life cycle; Designing the architecture; Forming the team structure; Creating a skeletal system.
Uses of architectural documentation; Views; Choosing the relevant views; Documenting a view; Documentation across views.

Text Books:
 (Chapters 1, 2, 4, 5, 7, 9)
 (Chapters 2, 3.1 to 3.4)
 (Chapters 1.1, 2, 3)

Reference Books:
1. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns- Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.
2. Web site for Patterns: http://www.hillside.net/patterns/
Information and Network Security

Planning for Security
Introduction; Information Security Policy, Standards, and Practices; The Information Security Blueprint; Contingency plan and a model for contingency plan.

Security Technology
Introduction; Physical design; Firewalls; Protecting Remote Connections
Introduction; Intrusion Detection Systems (IDS); Honey Pots, Honey Nets, and Padded cell systems; Scanning and Analysis Tools

Cryptography
Introduction; A short History of Cryptography; Principles of Cryptography; Cryptography Tools; Attacks on Cryptosystems.

Introduction to Network Security, Authentication Applications
Attacks, services, and Mechanisms; Security Attacks; Security Services; A model for Internetwork Security; Internet Standards and RFCs
Kerberos, X.509 Directory Authentication Service.

Electronic Mail Security
Pretty Good Privacy (PGP); S/MIME

IP Security
IP Security Overview; IP Security Architecture; Authentication Header; Encapsulating Security Payload; Combining Security Associations; Key Management.

Web Security
Web security requirements; Secure Socket layer (SSL) and Transport layer Security (TLS); Secure Electronic Transaction (SET)

Text Books:
 (Chapters 5, 6, 7, 8; Exclude the topics not mentioned in the syllabus)
 (Chapters: 1, 4, 5, 6, 7, 8)

Reference Book:
Software Testing

<table>
<thead>
<tr>
<th>Subject Code: 10MCA552</th>
<th>I.A. Marks: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours/Week: 4</td>
<td>Exam Hours: 3</td>
</tr>
<tr>
<td>Total Hours: 52</td>
<td>Exam Marks: 100</td>
</tr>
</tbody>
</table>

A Perspective on Testing, Examples: 6 Hours
- Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Levels of testing.

Boundary Value Testing, Equivalence Class Testing, Decision Table-Based Testing: 7 Hours
- Boundary value analysis, Robustness testing, Worst-case testing, Special value testing, Examples, Random testing, Equivalence classes, Equivalence test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations.
- Decision tables, Test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations.

Path Testing, Data Flow Testing: 7 Hours
- DD paths, Test coverage metrics, Basis path testing, guidelines and observations.
- Definition-Use testing, Slice-based testing, Guidelines and observations.

Levels of Testing, Integration Testing: 6 Hours
- Traditional view of testing levels, Alternative life-cycle models, The SATM system, Separating integration and system testing.
- A closer look at the SATM system, Decomposition-based, call graph-based, Path-based integrations.

System Testing, Interaction Testing: 7 Hours
- Threads, Basic concepts for requirements specification, Finding threads, Structural strategies and functional strategies for thread testing, SATM test threads, System testing guidelines, ASF (Atomic System Functions) testing example.

Process Framework: 7 Hours
- Validation and verification, Degrees of freedom, Varieties of software.
- Basic principles: Sensitivity, redundancy, restriction, partition, visibility, Feedback.
- The quality process, Planning and monitoring, Quality goals, Dependability properties, Analysis, Testing, Improving the process, Organizational factors.

Fault-Based Testing, Test Execution: 6 Hours
- Overview, Assumptions in fault-based testing, Mutation analysis, Fault-based adequacy criteria, Variations on mutation analysis.
- Test Execution: Overview, from test case specifications to test cases, Scaffolding, Generic versus specific scaffolding, Test oracles, Self-checks as oracles, Capture and replay.

Planning and Monitoring the Process, Documenting Analysis and Test: 6 Hours
- Quality and process, Test and analysis strategies and plans, Risk planning, Monitoring the process, Improving the process, The quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design specifications documents, Test and analysis reports.

TEXT BOOKS:
 (Listed topics only from Chapters 1, 2, 5, 6, 7, 9, 10, 12, 13, 14, 15)
 (Listed topics only from Chapters 2, 3, 4, 16, 17, 20, 24)

REFERENCE BOOKS:
Services Oriented Architecture

Subject Code: 10MCA553
L.A. Marks: 50
Hours/Week: 4
Exam Hours: 3
Total Hours: 52
Exam Marks: 100

Introduction to SOA, Evolution of SOA 7 Hours
Fundamental SOA; Common Characteristics of contemporary SOA; Common tangible benefits of SOA; An SOA timeline (from XML to Web services to SOA); The continuing evolution of SOA (Standards organizations and Contributing vendors); The roots of SOA (comparing SOA to Past architectures).

Web Services and Primitive SOA 6 Hours
The Web services framework; Services (as Web services); Service descriptions (with WSDL); Messaging (with SOAP).

Web Services and Contemporary SOA 13 Hours
Message exchange patterns; Service activity; Coordination; Atomic Transactions; Business activities; Orchestration; Choreography. Addressing; Reliable messaging; Correlation; Polices; Metadata exchange; Security; Notification and eventing.

Principles of Service – Orientation 7 Hours
Services-orientation and the enterprise; Anatomy of a service-oriented architecture; Common Principles of Service-orientation; How service orientation principles inter-relate; Service-orientation and object-orientation; Native Web service support for service-orientation principles.

Service Layers 6 Hours
Service-orientation and contemporary SOA; Service layer abstraction; Application service layer; Business service layer, Orchestration service layer; Agnostic services; Service layer configuration scenarios

Business Process Design 7 Hours
WS-BPEL language basics; WS-Coordination overview; Service-oriented business process design; WS-addressing language basics; WS-ReliableMessaging language basics

SOA Platforms 6 Hours
SOA platform basics; SOA support in J2EE; SOA support in .NET; Integration considerations

Text Books:

Reference Books:
Wireless Networks and Mobile Computing

Subject Code: 10MCA554
IA Marks: 50
Hours/Week: 04
Total Hours: 52
Exam Hours: 03
Exam Marks: 100

Mobile Computing Architecture:
6 Hours

Wireless Networks – 1: GSM and SMS:
7 Hours
Global Systems for Mobile Communication (GSM and Short Service Messages (SMS)): GSM Architecture, Entities, Call routing in GSM, PLMN Interface, GSM Addresses and Identities, Network Aspects in GSM, Mobility Management, GSM Frequency allocation. Introduction to SMS, SMS Architecture, SM MT, SM MO, SMS as Information bearer, applications.

Wireless Networks – 2: GPRS:
6 Hours
GPRS and Packet Data Network, GPRS Network Architecture, GPRS Network Operations, Data Services in GPRS, Applications for GPRS, Billing and Charging in GPRS.

Wireless Networks – 3: CDMA, 3G and WiMAX:
7 Hours
Spread Spectrum technology, IS-95, CDMA versus GSM, Wireless Data, Third Generation Networks, Applications on 3G, Introduction to WiMAX.

Mobile Client:
6 Hours

Mobile OS and Computing Environment:
7 Hours

Building, Mobile Internet Applications:
6 Hours
Thin client: Architecture, the client, Middleware, messaging Servers, Processing a Wireless request, Wireless Applications Protocol (WAP) Overview, Wireless Languages: Markup Languages, HDML, WML, HTML, cHTML, XHTML, VoiceXML.

J2ME:
7 Hours
Introduction, CDC, CLDC, MIDP; Programming for CLDC, MIDlet model, Provisioning, MIDlet lifecycle, Creating new application, MIDlet event handling, GUI in MIDP, Low level GUI Components, Multimedia APIs; Communication in MIDP, Security Considerations in MIDP.

Text Books:

Reference Books:
Storage Area Networks

Subject Code: 10MCA555
I.A. Marks: 50
Hours/Week: 04
Exam Hours: 03
Total Hours: 52
Exam Marks: 100

Introduction to Information Storage and Management, Storage System Environment
7 Hours
- Information Storage, Evolution of Storage Technology and Architecture
- Data Center Infrastructure
- Key Challenges in Managing Information, Information Lifecycle
- Components of Storage System Environment
- Disk Drive Components
- Disk Drive Performance
- Fundamental Laws Governing Disk Performance
- Logical Components of the Host, Application Requirements and Disk Performance.

Data Protection, Intelligent Storage System
6 Hours
- Implementation of RAID, RAID Array Components, RAID Levels, RAID Comparison, RAID Impact on Disk Performance, Hot Spares
- Components of an Intelligent Storage System, Intelligent Storage Array

Direct-Attached Storage, SCSI, and Storage Area Networks
7 Hours
- Types of DAS, DAS Benefits and Limitations, Disk Drive Interfaces
- Introduction to Parallel SCSI
- Overview of Fibre Channel, The SAN and Its Evolution, Components of SAN, FC Connectivity
- Fibre Channel Ports, Fibre Channel Architecture, Zoning, Fibre Channel Login Types, FC Topologies.

NAS, IP SAN
6 Hours

Content-Addressed Storage, Storage Virtualization
6 Hours
- Fixed Content and Archives, Types of Archive, Features and Benefits of CAS, CAS Architecture, Object Storage and Retrieval in CAS, CAS Examples.
- Forms of Virtualization, SNIA Storage Virtualization Taxonomy, Storage Virtualizations Configurations, Storage Virtualization Challenges, Types of Storage Virtualization.

Business Continuity, Backup and Recovery
6 Hours
- Backup Purpose, Backup Considerations, Backup Granularity, Recovery Considerations, Backup Methods, Backup Process, Backup and restore Operations, Backup Topologies, Backup in NAS Environments, Backup Technologies.

Local Replication, Remote Replication
7 Hours
- Source and Target, Uses of Local Replicas, Data Consistency, Local Replication Technologies, Restore and Restart Considerations, Creating Multiple Replicas, Management Interface, Modes of Remote Replication, Remote Replication Technologies, Network Infrastructure.

Securing the Storage Infrastructure, Managing the Storage Infrastructure
7 Hours
- Monitoring the Storage Infrastructure, Storage Management Activities, Storage Infrastructure Management Challenges, Developing an Ideal Solution.

Text Books:

Reference Books:
Web 2.0 and Rich Internet Applications

Introduction, Ajax - 1
6 Hours
Creating Ajax Applications: An example, Analysis of example ajax.html, Creating the JavaScript, Creating and opening the XMLHttpRequest object, Data download, Displaying the fetched data, Connecting to the server, Adding Server-side programming, Sending data to the server using GET and POST, Using Ajax together with XML.

Ajax – 2
7 Hours
Handling multiple XMLHttpRequest objects in the same page, Using two XMLHttpRequest objects, Using an array of XMLHttpRequest objects, Using inner functions, Downloading JavaScript, connecting to Google Suggest, Creating google.php, Downloading from other domains with Ajax, HTML header request and Ajax, Defeating caching, Examples.
Building XML and working with XML in JavaScript, Getting the document element, Accessing any XML element, Handling whitespace in Firefox, Handling cross-browser whitespace, Accessing XML data directly, Validating XML, Further examples of Rich Internet Applications with Ajax.

Ajax – 3
6 Hours
Drawing user’s attention to downloaded text, Styling text, colors and background using CSS, Setting element location in the web pages, Setting the stacking order of web page elements, Further examples of using Ajax. Displaying all the data in an HTML form, Working with PHP server variables, Getting the data in to array format, Wrapping applications in to a single PHP page, Validating input from the user, Validating integers and text, DOM, Appending new elements to a web page using the DOM and Ajax, Replacing elements using the DOM, Handling timeouts in Ajax, Downloading images with Ajax, Example programs.

Flex - 1
7 Hours
Introduction: Understanding Flex Application Technologies, Using Flex Elements, Working with Data Services (Loading Data at Runtime), The Differences between Traditional and Flex Web Applications, Understanding How Flex Applications Work, Understanding Flex and Flash Authoring.
Building Applications with the Flex Framework: Using Flex Tool Sets, Creating Projects, Building Applications, Deploying Applications

Flex – 2
7 Hours
MXML: Understanding MXML Syntax and Structure, Making MXML Interactive
Working with UI Components: Understanding UI Components, Buttons, Value Selectors, Text Components, List-Based Controls, Pop-Up Controls, Navigators, Control Bars
Customizing Application Appearance: Using Styles, Skinning components, Customizing the preloader, Themes, Runtime CSS

Flex - 3
6 Hours

Flex - 4
7 Hours
Flex - 5
6 Hours
Working with Data: Using Data Models, Data Binding, Enabling Data Binding for Custom Classes, Data Binding Examples, Building data binding proxies.
Validating and Formatting Data: Validating user input, Formatting Data.

Text Books:
 (Listed topics from Chapters 3, 4, 6, 7, 11, 12)
 (Listed topics from Chapters 1 to 8, 12 to 15)

Reference Books:
The student has to draw the necessary analysis and design diagrams in UML, using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner. For each pattern, an example is listed here.

However, student is free to choose to solve any suitable problem to demonstrate the specified pattern.

The Design Pattern is allotted based on lots from the following list:

1) **Publisher-Subscriber**
 Example: An embedded application; An interrupt-driven module keeps track of temperature of the furnace. When the temperature is beyond preset upper / lower limits, a module that controls the heating element must be informed. Another module that displays an indicator also needs to know of such a change. Further, a log module also needs this information.

2) **Command Processor**
 Example: A simple Text Editor; Facilities provided include making the text bold, making the text in to all upper case; An Undo feature is to be implemented.

3) **Forwarder-Receiver**
 Example: A simple peer-to-peer message exchange scenario; Underlying communication protocol is TCP/IP.

4) **Client-Dispatcher-Server**
 Example: A simplified implementation of RPC

5) **Proxy**
 Example: A highly simplified implementation of a proxy web server.

6) **Whole-Part**
 Example: Implementation of any collection like a set.

7) **Master-Slave**
 Example: A multithreaded implementation of any parallelized divide-and-conquer algorithm
.Net Laboratory

Subject Code: 10MCA57 I.A Marks: 50
Hours/Week: 3 Exam Hours: 03
Total Hours: 42 Exam Marks: 50

1. Write a Program in C# to Check whether a number is Palindrome or not.
2. Write a Program in C# to demonstrate Command line arguments Processing.
3. Write a Program in C# to find the roots of Quadratic Equation.
4. Write a Program in C# to demonstrate boxing and unBoxing.
5. Write a Program in C# to implement Stack operations.
6. Write a program to demonstrate Operator overloading.
7. Write a Program in C# to find the second largest element in a single dimensional array.
8. Write a Program in C# to multiply to matrices using Rectangular arrays.
9. Find the sum of all the elements present in a jagged array of 3 inner arrays.
10. Write a program to reverse a given string using C#.
11. Using Try, Catch and Finally blocks write a program in C# to demonstrate error handling.
12. Design a simple calculator using Switch Statement in C#.
13. Demonstrate Use of Virtual and override key words in C# with a simple program.
14. Implement linked lists in C# using the existing collections name space.
15. Write a program to demonstrate abstract class and abstract methods in C#.
16. Write a program in C# to build a class which implements an interface which is already existing.
17. Write a program to illustrate the use of different properties in C#.
18. Demonstrate arrays of interface types with a C# program.

Note: In the examination each student picks one question from the lot of all 18 questions.
Mini Project

Subject Code: 10MCA58 I.A Marks: 50
Hours/Week: 3 Exam Hours: 03
Total Hours: 42 Exam Marks: 50

NOTES:

• A team of TWO students must develop the mini project. However, during the examination, each student must demonstrate the project individually.
• The team may implement a mini project of their choice.
• The team must submit a Brief Project Report (25 to 30 Pages) that must include the following:
 o Introduction
 o Requirements
 o Software Development Process Model Adopted
 o Analysis and Design Models
 o Implementation
 o Testing
• The Report must be evaluated for 10 marks, Demonstration for 30 marks and Viva for 10 marks.